Optimisation and Generalisation: Footprints in Instance Space
暂无分享,去创建一个
[1] David Maxwell Chickering,et al. A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..
[2] Mauro Birattari,et al. Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.
[3] Henry A. Kautz,et al. Auto-Walksat: A Self-Tuning Implementation of Walksat , 2001, Electron. Notes Discret. Math..
[4] Ross J. W. James,et al. A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance , 2009, LION.
[5] Eugene S. Edgington,et al. Randomization Tests , 2011, International Encyclopedia of Statistical Science.
[6] Jonathan Gratch,et al. Adaptive Problem-solving for Large-scale Scheduling Problems: A Case Study , 1996, J. Artif. Intell. Res..
[7] Thomas Stützle,et al. Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.
[8] David S. Johnson,et al. A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.
[9] Michael H. Goldwasser,et al. Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, Proceedings of a DIMACS Workshop, USA, 1999 , 2002, Data Structures, Near Neighbor Searches, and Methodology.
[10] Thomas Bartz-Beielstein,et al. Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.
[11] A. E. Eiben,et al. A method for parameter calibration and relevance estimation in evolutionary algorithms , 2006, GECCO '06.
[12] Steven Minton,et al. Automatically configuring constraint satisfaction programs: A case study , 1996, Constraints.
[13] Kevin Leyton-Brown,et al. SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..
[14] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[15] F. Hutter,et al. ParamILS: an automatic algorithm configuration framework , 2009 .
[16] J. Christopher Beck,et al. APPLYING MACHINE LEARNING TO LOW‐KNOWLEDGE CONTROL OF OPTIMIZATION ALGORITHMS , 2005, Comput. Intell..
[17] A. E. Eiben,et al. Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.
[18] Kevin Leyton-Brown,et al. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.
[19] Mike Preuss. Adaptability of Algorithms for Real-Valued Optimization , 2009, EvoWorkshops.