Computing LLL-Reduced Basis for Orthogonal Lattice

As a typical application, the Lenstra-Lenstra-Lovasz lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.

[1]  Phong Quang Nguyen La geometrie des nombres en cryptologie , 1999 .

[2]  Phong Q. Nguyen,et al.  The LLL Algorithm - Survey and Applications , 2009, Information Security and Cryptography.

[3]  Michael E. Pohst,et al.  A Modification of the LLL Reduction Algorithm , 1987, J. Symb. Comput..

[4]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[5]  Jeffrey C. Lagarias,et al.  Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.

[6]  George Havas,et al.  Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction , 1998, Exp. Math..

[7]  Damien Stehlé,et al.  A new view on HJLS and PSLQ: sums and projections of lattices , 2013, ISSAC '13.

[8]  Wolfgang M. Schmidt,et al.  Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height , 1968 .

[9]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[10]  A. Storjohann Faster algorithms for integer lattice basis reduction , 1996 .

[11]  Damien Stehlé,et al.  Lattice Reduction Algorithms , 2017, ISSAC.

[12]  Charles C. Sims,et al.  Computation with finitely presented groups , 1994, Encyclopedia of mathematics and its applications.

[13]  Arne Storjohann,et al.  A BLAS based C library for exact linear algebra on integer matrices , 2005, ISSAC.

[14]  Damien Stehlé,et al.  An LLL-reduction algorithm with quasi-linear time complexity: extended abstract , 2011, STOC '11.

[15]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[16]  László Lovász,et al.  Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers , 1984, STOC '84.

[17]  Jacques Stern,et al.  Merkle-Hellman Revisited: A Cryptanalysis of the Qu-Vanstone Cryptosystem Based on Group Factorizations , 1997, CRYPTO.

[18]  Damien Stehlé,et al.  Faster LLL-type Reduction of Lattice Bases , 2016, IACR Cryptol. ePrint Arch..

[19]  Mark van Hoeij,et al.  Gradual Sub-lattice Reduction and a New Complexity for Factoring Polynomials , 2011, Algorithmica.