Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis.

Nonlinear dynamical systems that are open, dissipative, and subject to strong non-equilibrium constraints are capable of self-organization, the spontaneous emergence of large scaJe, complex behavior (Nicolis & Prigogine, 1989). One variety of self-organization that can be produced by such systems is deterministic chaos (popularly, “chaos”). Although chaos was first described by Poincar6 in the 1800s, recent years have witnessed major developments in the physics of chaotic systems (Crutchfield, Farmer, Packard, & Shaw, 1986; Eubank & Farmer, 1990; Glass & Mackey, 1988; Gleick, 1987; Guevara, Glass, Mackey, & Shrier, 1983; Middleton, 1990; Schuster, 1988; Stewart, 1989; Tsonis & Tsonis, 1989; van Rossum & de Bie, 1991). Beginning in the mid 1980s, scientists began to apply chaos theory to the human electroencephalogram, or EEG (Albano et al., 1986; Babloyantz & Destexhe, 1986; Bab-loyantz, Salazar, & Nicolis, 1985; Dvořak & SIska, 1986; Dvořak, SIska, Wackermann, Hrudova, & Dostalek, 1986; Holzfuss & Mayer-...

[1]  H. Jasper,et al.  Electrical Activity of the Brain , 1941 .

[2]  W. E. Hick Quarterly Journal of Experimental Psychology , 1948, Nature.

[3]  E. C. Cherry Some Experiments on the Recognition of Speech, with One and with Two Ears , 1953 .

[4]  R. Hyman Stimulus information as a determinant of reaction time. , 1953, Journal of experimental psychology.

[5]  D. Broadbent The role of auditory localization in attention and memory span. , 1954, Journal of experimental psychology.

[6]  N. Moray Attention in Dichotic Listening: Affective Cues and the Influence of Instructions , 1959 .

[7]  A. Treisman Contextual Cues in Selective Listening , 1960 .

[8]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[9]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[10]  J. Lachman,et al.  Cognitive Psychology and Information Processing: An Introduction , 1979 .

[11]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[12]  F. Takens Detecting strange attractors in turbulence , 1981 .

[13]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[14]  E. Basar Toward a physical approach to integrative physiology. I. Brain dynamics and physical causality. , 1983, The American journal of physiology.

[15]  I. Stewart,et al.  Catastrophe theory modeling in psychology. , 1983 .

[16]  Alvin Shrier,et al.  Chaos in neurobiology , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[18]  Z. Alexandrowicz,et al.  Fractal Dimension of Strange Attractors from Radius versus Size of Arbitrary Clusters , 1983 .

[19]  Antonio Politi,et al.  Intrinsic oscillations in measuring the fractal dimension , 1984 .

[20]  A. Politi,et al.  Statistical description of chaotic attractors: The dimension function , 1985 .

[21]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[22]  A. Babloyantz,et al.  Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle , 1985 .

[23]  Floris Takens,et al.  On the numerical determination of the dimension of an attractor , 1985 .

[24]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[25]  Neal B. Abraham,et al.  Lasers and Brains: Complex Systems with Low-Dimensional Attractors , 1986 .

[26]  Theodore R. Bashore,et al.  Experimental Studies of Chaotic Neural Behavior: Cellular Activity and Electroencephalographic Signals , 1986 .

[27]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[28]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Leonard A. Smith,et al.  Lacunarity and intermittency in fluid turbulence , 1986 .

[30]  Joachim Holzfuss,et al.  Approach to error-estimation in the application of dimension algorithms , 1986 .

[31]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[32]  Joachim Holzfuss,et al.  Problems Associated with Dimensional Analysis of Electroencephalogram Data , 1986 .

[33]  Biman Das,et al.  Calculating the dimension of attractors from small data sets , 1986 .

[34]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[35]  Mees,et al.  Singular-value decomposition and embedding dimension. , 1987, Physical review. A, General physics.

[36]  GOTTFRIED MAYER‐KRESS AND,et al.  Dimensionality of the Human Electroencephalogram , 1987, Annals of the New York Academy of Sciences.

[37]  Theiler,et al.  Efficient algorithm for estimating the correlation dimension from a set of discrete points. , 1987, Physical review. A, General physics.

[38]  R. C. Watt,et al.  Phase Space Analysis of Human EEG during General Anesthesia , 1987 .

[39]  A. Babloyantz,et al.  Strange Attractors in the Human Cortex , 1987 .

[40]  Alfonso M Albano,et al.  Data Requirements for Reliable Estimation of Correlation Dimensions , 1987 .

[41]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[42]  Broggi,et al.  Dimension increase in filtered chaotic signals. , 1988, Physical review letters.

[43]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[44]  Xu Nan,et al.  The fractal dimension of EEG as a physical measure of conscious human brain activities. , 1988 .

[45]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[46]  A. Babloyantz,et al.  The Creutzfeld-Jakob Disease in the Hierarchy of Chaotic Attractors , 1988 .

[47]  Agnessa Babloyantz,et al.  A comparative study of the experimental quantification of deterministic chaos , 1988 .

[48]  Frank C. Mahncke Making a New Science , 1988 .

[49]  Schwartz,et al.  Singular-value decomposition and the Grassberger-Procaccia algorithm. , 1988, Physical review. A, General physics.

[50]  S. Ellner Estimating attractor dimensions from limited data: A new method, with error estimates , 1988 .

[51]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[52]  F. Yates,et al.  Dimensional analysis of nonlinear oscillations in brain, heart, and muscle , 1988 .

[53]  James Theiler,et al.  Lacunarity in a best estimator of fractal dimension , 1988 .

[54]  I. Prigogine,et al.  Exploring Complexity: An Introduction , 1989 .

[55]  Erol Başar,et al.  Chaos-and alpha-preparation in brain function , 1989 .

[56]  A. Babloyantz,et al.  Some Remarks on Nonlinear Data Analysis of Physiological Time Series , 1989 .

[57]  J. Szentágothai,et al.  Self-organization in the nervous system , 1989 .

[58]  Tyler S. Lorig,et al.  Factor analysis of the EEG indicates inconsistencies in traditional frequency bands , 1989 .

[59]  A. Fraser Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria , 1989 .

[60]  M. Möller,et al.  Errors from digitizing and noise in estimating attractor dimensions , 1989 .

[61]  Eliano Pessa,et al.  The detection of strange attractors in brain dynamics through EEG data analyses , 1989 .

[62]  Anastasios A. Tsonis,et al.  Chaos: principles and implications in biology , 1989, Comput. Appl. Biosci..

[63]  F. David Peat,et al.  Turbulent Mirror: An Illustrated Guide to Chaos Theory and the Science of Wholeness , 1989 .

[64]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[65]  Hediger,et al.  Fractal dimension and local intrinsic dimension. , 1989, Physical review. A, General physics.

[66]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[67]  R. Penrose The emperor's new mind: concerning computers, minds, and the laws of physics , 1989 .

[68]  J. J. Wright Linearity and Nonlinearity in Electrocortical Waves, and Their Elementary Statistical Dynamics , 1989 .

[69]  H. Jurgens The Language of Fractals. , 1990 .

[70]  Gabriel B. Mindlin,et al.  An efficient algorithm for fast O(N*ln(N)) box counting , 1990 .

[71]  G Sugihara,et al.  Applications of fractals in ecology. , 1990, Trends in ecology & evolution.

[72]  M. Paluš,et al.  On reliability of singular-value decomposition in attractor reconstruction , 1990 .

[73]  G. Mpitsos Chaos in brain function and the problem of nonstationarity: a commentary , 1990 .

[74]  Robert A. M. Gregson,et al.  Comparisons of the nonlinear dynamics of electroencephalograms under various task loading conditions: A preliminary report , 1990, Biological Psychology.

[75]  Christopher Essex,et al.  Chaotic time series analyses of epileptic seizures , 1990 .

[76]  K. E. Graf,et al.  Dimensional analysis of the waking EEG , 1990 .

[77]  Jan Klaschka,et al.  Modification of the Grassberger-Procaccia algorithm for estimating the correlation exponent of chaotic systems with high embedding dimension , 1990 .

[78]  J. D. Farmer,et al.  Nonlinear modeling of chaotic time series: Theory and applications , 1990 .

[79]  Mitschke Acausal filters for chaotic signals. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[80]  B. Mandelbrot,et al.  Fractals : a geometry of nature : fractal goemetry is the key to understanding chaos. It is also the geometry of mountains, clouds and galaxies , 1990 .

[81]  R. W. Rollins,et al.  Studying chaotic systems using microcomputer simulations and Lyapunov exponents , 1990 .

[82]  K. Briggs An improved method for estimating Liapunov exponents of chaotic time series , 1990 .

[83]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[84]  J. Doyne Farmer,et al.  A Rosetta stone for connectionism , 1990 .

[85]  D. Ruelle,et al.  The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[86]  Turab Lookman,et al.  Recovering the attractor: A review of chaotic time-series analysis , 1990 .

[87]  J. Townsend Serial vs. Parallel Processing: Sometimes They Look like Tweedledum and Tweedledee but they can (and Should) be Distinguished , 1990 .

[88]  Bruce J. West Fractal Forms in Physiology , 1990 .

[89]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[90]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.

[91]  Mark E Nelson,et al.  Brain maps and parallel computers , 1990, Trends in Neurosciences.

[92]  Roberto Serra,et al.  Complex Systems and Cognitive Processes , 1990, Springer Berlin Heidelberg.

[93]  G Sugihara,et al.  Distinguishing error from chaos in ecological time series. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[94]  B. West Physiology in Fractal Dimensions , 1990 .

[95]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals; dependence on state and brain site. , 1991, Electroencephalography and clinical neurophysiology.

[96]  Pei-Chen Lo,et al.  Estimation Of Lyapunov Exponents From The EEG , 1991, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991.

[97]  Dennis W. Duke,et al.  Altered EEG Dynamical Responsivity Associated with Normal Aging and Probable Alzheimer's Disease , 1991 .

[98]  B H Jansen,et al.  Quantitative analysis of electroencephalograms: is there chaos in the future? , 1991, International journal of bio-medical computing.

[99]  A Babloyantz,et al.  Evidence for slow brain waves: a dynamical approach. , 1991, Electroencephalography and clinical neurophysiology.

[100]  J. Rossum,et al.  Chaos and illusion , 1991 .

[101]  Ingber,et al.  Statistical mechanics of neocortical interactions: A scaling paradigm applied to electroencephalography. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[102]  H. Abarbanel,et al.  LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS: THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA , 1991 .

[103]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[104]  P. Linsay An efficient method of forecasting chaotic time series using linear interpolation , 1991 .

[105]  P. Bak,et al.  Self-organized criticality , 1991 .

[106]  S. Kauffman,et al.  Antichaos and adaptation. , 1991, Scientific American.

[107]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[108]  R. Savit,et al.  Time series and dependent variables , 1991 .

[109]  G. Parfitt,et al.  A catastrophe model of anxiety and performance. , 1991, British journal of psychology.

[110]  David J. Wales,et al.  Calculating the rate of loss of information from chaotic time series by forecasting , 1991, Nature.

[111]  E. Lorenz Dimension of weather and climate attractors , 1991, Nature.

[112]  J. D. Farmer,et al.  A Theory of State Space Reconstruction in the Presence of Noise , 1991 .

[113]  W. Pritchard,et al.  Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method. , 1992, Psychophysiology.

[114]  W. Pritchard,et al.  The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. , 1992, The International journal of neuroscience.