On the use of marginal posteriors in marginal likelihood estimation via importance sampling
暂无分享,去创建一个
Ioannis Ntzoufras | Efthymios G. Tsionas | Konstantinos Perrakis | I. Ntzoufras | E. Tsionas | K. Perrakis
[1] Tom Heskes,et al. Discussion of ``Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations'' by H. Rue, S. Martino and N. Chopin , 2009 .
[2] Martin D. Weinberg,et al. Computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution , 2009, 0911.1777.
[3] Ioannis Ntzoufras,et al. Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions , 2013, Stat. Comput..
[4] J. Simonoff. Multivariate Density Estimation , 1996 .
[5] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[6] W. Newey,et al. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .
[7] M. P. Hobson,et al. Bayesian evidence for two companions orbiting HIP 5158 , 2011, 1105.1150.
[8] A. Raftery,et al. Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .
[9] David J. Spiegelhalter,et al. WinBUGS user manual version 1.4 , 2003 .
[10] Bruno Tuffin,et al. Markov chain importance sampling with applications to rare event probability estimation , 2011, Stat. Comput..
[11] C. Robert,et al. Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .
[12] Dimitris Karlis,et al. Bayesian Assessment of the Distribution of Insurance Claim Counts Using Reversible Jump MCMC , 2005 .
[13] Ming-Hui Chen,et al. Computing marginal likelihoods from a single MCMC output , 2005 .
[14] Xiao-Li Meng,et al. SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .
[15] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[16] Petros Dellaportas,et al. On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..
[17] John Geweke,et al. Interpretation and inference in mixture models: Simple MCMC works , 2007, Comput. Stat. Data Anal..
[18] Christian Robert,et al. Approximating the marginal likelihood in mixture models , 2007 .
[19] P. Diggle. Analysis of Longitudinal Data , 1995 .
[20] Adrian E. Raftery,et al. Computing Normalizing Constants for Finite Mixture Models via Incremental Mixture Importance Sampling (IMIS) , 2006 .
[21] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[22] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[23] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[24] Bettina Gruen. Bayesian Mixture Models with JAGS , 2015 .
[25] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[26] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[27] S. Chib,et al. Posterior Simulation and Bayes Factors in Panel Count Data Models , 1998 .
[28] C. Robert,et al. Reparameterisation issues in mixture modelling and their bearing on MCMC algorithms , 1999 .
[29] Nial Friel,et al. Estimating the evidence – a review , 2011, 1111.1957.
[30] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[31] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[32] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[33] Joshua C. C. Chan,et al. Marginal Likelihood Estimation with the Cross-Entropy Method , 2012 .
[34] Bernhard Schölkopf,et al. Bayesian Model Scoring in Markov Random Fields , 2007 .
[35] A. Rukhin. Bayes and Empirical Bayes Methods for Data Analysis , 1997 .
[36] J. Brian Gray,et al. Introduction to Linear Regression Analysis , 2002, Technometrics.
[37] S. Frühwirth-Schnatter. Markov chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models , 2001 .
[38] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[39] M. Newton,et al. Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .
[40] N. G. Best,et al. WinBUGS User Manual: Version 1.4 , 2001 .
[41] Tom Minka,et al. Expectation Propagation for approximate Bayesian inference , 2001, UAI.
[42] Ming-Hui Chen. Importance-Weighted Marginal Bayesian Posterior Density Estimation , 1994 .
[43] A. Pettitt,et al. Marginal likelihood estimation via power posteriors , 2008 .
[44] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[45] Adrian E. Raftery,et al. Bayes factors and model uncertainty , 1995 .
[46] M. Steel,et al. Benchmark Priors for Bayesian Model Averaging , 2001 .
[47] Iven Van Mechelen,et al. A Bayesian approach to the selection and testing of mixture models , 2003 .
[48] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[49] M. Postman,et al. Probes of large-scale structure in the Corona Borealis region. , 1986 .
[50] W. Newey,et al. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .
[51] C. Robert,et al. Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .
[52] Man-Suk Oh. Estimation of posterior density functions from a posterior sample , 1999 .
[53] Walter R. Gilks,et al. Strategies for improving MCMC , 1995 .
[54] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[55] S. Frühwirth-Schnatter. Estimating Marginal Likelihoods for Mixture and Markov Switching Models Using Bridge Sampling Techniques , 2004 .
[56] Lennart F. Hoogerheide,et al. A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood , 2012, Comput. Stat. Data Anal..
[57] B. Carlin,et al. Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .
[58] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[59] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[60] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[61] Jean-Michel Marin,et al. Bayesian Modelling and Inference on Mixtures of Distributions , 2005 .
[62] Merlise A. Clyde,et al. Rao–Blackwellization for Bayesian Variable Selection and Model Averaging in Linear and Binary Regression: A Novel Data Augmentation Approach , 2011 .