Inferring Cellular Networks Using Probabilistic Graphical Models

High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.

[1]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[2]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[4]  AC Tose Cell , 1993, Cell.

[5]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[6]  David Maxwell Chickering,et al.  Learning Bayesian networks: The combination of knowledge and statistical data , 1995, Mach. Learn..

[7]  Finn Verner Jensen,et al.  Introduction to Bayesian Networks , 2008, Innovations in Bayesian Networks.

[8]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[10]  Sorin Istrail,et al.  Proceedings of the second annual international conference on Computational molecular biology , 1998, RECOMB 1998.

[11]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[12]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[13]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[14]  S. Siller Foundations of Social Evolution , 1999, Heredity.

[15]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[16]  E. Lander Array of hope , 1999, Nature Genetics.

[17]  J. Ashby References and Notes , 1999 .

[18]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[19]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[20]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[21]  I. Mysterud Unto others: The evolution and psychology of unselfish behavior , 1999 .

[22]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[23]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[24]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[25]  Craig Boutilier,et al.  Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence , 2000 .

[26]  G. Church,et al.  Identifying regulatory networks by combinatorial analysis of promoter elements , 2001, Nature Genetics.

[27]  Ben Taskar,et al.  Rich probabilistic models for gene expression , 2001, ISMB.

[28]  Nir Friedman,et al.  Inferring subnetworks from perturbed expression profiles , 2001, ISMB.

[29]  David Page,et al.  Modelling regulatory pathways in E. coli from time series expression profiles , 2002, ISMB.

[30]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[31]  Hiroyuki Toh,et al.  Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling , 2002, Bioinform..

[32]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[33]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[34]  J. Ross,et al.  Determination of causal connectivities of species in reaction networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Amos Tanay,et al.  Minreg: Inferring an active regulator set , 2002, ISMB.

[36]  Haidong Wang,et al.  Discovering molecular pathways from protein interaction and gene expression data , 2003, ISMB.

[37]  R. Cressman Evolutionary Dynamics and Extensive Form Games , 2003 .

[38]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[39]  Satoru Miyano,et al.  Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection , 2003, ECCB.

[40]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[41]  Satoru Miyano,et al.  Inferring gene networks from time series microarray data using dynamic Bayesian networks , 2003, Briefings Bioinform..

[42]  S. Rafii,et al.  Splitting vessels: Keeping lymph apart from blood , 2003, Nature Medicine.

[43]  Daphne Koller,et al.  Genome-wide discovery of transcriptional modules from DNA sequence and gene expression , 2003, ISMB.

[44]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[45]  J. Fletcher Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics , 2006, Journal of Mammalian Evolution.