Multilayer Complex Network Descriptors for Color-Texture Characterization

A new method based on complex networks is proposed for color-texture analysis. The proposal consists on modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT. Results among various literature methods are compared, including deep convolutional neural networks with pre-trained architectures. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.

[1]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[2]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[3]  Tieniu Tan,et al.  Brief review of invariant texture analysis methods , 2002, Pattern Recognit..

[4]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[5]  Luciano da Fontoura Costa,et al.  Texture recognition based on diffusion in networks , 2016, Inf. Sci..

[6]  Dalcimar Casanova Identificação de espécies vegetais por meio da análise de textura foliar , 2008 .

[7]  Manuel Fernández Delgado,et al.  Influence of normalization and color space to color texture classification , 2017, Pattern Recognit..

[8]  W. H. Howell,et al.  A TEXT-BOOK OF PHYSIOLOGY , 1906 .

[9]  Bruno Brandoli Machado,et al.  A complex network approach for nanoparticle agglomeration analysis in nanoscale images , 2016, Journal of Nanoparticle Research.

[10]  Mason A. Porter,et al.  Multislice Modularity Optimization in Community Detection and Image Segmentation , 2012, 2012 IEEE 12th International Conference on Data Mining Workshops.

[11]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[12]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[13]  K. Gegenfurtner,et al.  The contributions of color to recognition memory for natural scenes. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[14]  Chang-qing Zhu,et al.  Study of remote sensing image texture analysis and classification using wavelet , 1998 .

[15]  Subhransu Maji,et al.  Deep filter banks for texture recognition and segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  B Julesz,et al.  Inability of Humans to Discriminate between Visual Textures That Agree in Second-Order Statistics—Revisited , 1973, Perception.

[17]  Majid Mirmehdi,et al.  Segmentation of Color Textures , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Odemir Martinez Bruno,et al.  A complex network approach for dynamic texture recognition , 2015, Neurocomputing.

[19]  Euripides G. M. Petrakis,et al.  A survey on industrial vision systems, applications, tools , 2003, Image Vis. Comput..

[20]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Wesley Nunes Gonçalves Análise de texturas estáticas e dinâmicas e suas aplicações em biologia e nanotecnologia , 2013 .

[22]  Wesley Nunes Gonçalves,et al.  Texture Analysis by Bag-Of-Visual-Words of Complex Networks , 2015, CIARP.

[23]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Vicky Goh,et al.  Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[25]  André Ricardo Backes,et al.  Texture analysis and classification: A complex network-based approach , 2013, Inf. Sci..

[26]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[27]  W. Lam,et al.  Rotated texture classification by improved iterative morphological decomposition , 1997 .

[28]  Marián Boguñá,et al.  Extracting the multiscale backbone of complex weighted networks , 2009, Proceedings of the National Academy of Sciences.

[29]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[30]  Santo Fortunato,et al.  Information filtering in complex weighted networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[32]  Jiri Matas,et al.  Working hard to know your neighbor's margins: Local descriptor learning loss , 2017, NIPS.

[33]  Georgios S. Paschos,et al.  Perceptually uniform color spaces for color texture analysis: an empirical evaluation , 2001, IEEE Trans. Image Process..

[34]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[35]  Matti Pietikäinen,et al.  Classification with color and texture: jointly or separately? , 2004, Pattern Recognit..

[36]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[37]  Manik Varma,et al.  Locally Invariant Fractal Features for Statistical Texture Classification , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Odemir Martinez Bruno,et al.  Texture analysis using fractal descriptors estimated by the mutual interference of color channels , 2016, Inf. Sci..

[39]  André Ricardo Backes,et al.  A New Approach to Estimate Fractal Dimension of Texture Images , 2008, ICISP.

[40]  Safia Abdelmounaime,et al.  New Brodatz-Based Image Databases for Grayscale Color and Multiband Texture Analysis , 2013 .

[41]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[42]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[43]  Odemir Martinez Bruno,et al.  A Rotation Invariant Face Recognition Method Based on Complex Network , 2010, CIARP.

[44]  Paul F. Whelan,et al.  Experiments in colour texture analysis , 2001, Pattern Recognit. Lett..

[45]  Olivier Alata,et al.  Choice of a pertinent color space for color texture characterization using parametric spectral analysis , 2011, Pattern Recognit..

[46]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[47]  André Ricardo Backes,et al.  Color Texture Classification Using Shortest Paths in Graphs , 2014, IEEE Transactions on Image Processing.

[48]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  J. Rieger,et al.  Sensory and cognitive contributions of color to the recognition of natural scenes , 2000, Current Biology.

[50]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Brian A. Wandell,et al.  A spatial extension of CIELAB for digital color‐image reproduction , 1997 .

[52]  Odemir Martinez Bruno,et al.  Fractal analysis of leaf-texture properties as a tool for taxonomic and identification purposes: a case study with species from Neotropical Melastomataceae (Miconieae tribe) , 2010, Plant Systematics and Evolution.

[53]  Paul Southam,et al.  Theoretical and experimental comparison of different approaches for color texture classification , 2011, J. Electronic Imaging.

[54]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[55]  Arnaud Browet,et al.  Community Detection for Hierarchical Image Segmentation , 2011, IWCIA.

[56]  F. Meriaudeau,et al.  Optimized texture classification by using hierarchical complex network measurements , 2006, Electronic Imaging.

[57]  Christoph Palm,et al.  Color texture classification by integrative Co-occurrence matrices , 2004, Pattern Recognit..

[58]  T. Poggio,et al.  BOOK REVIEW David Marr’s Vision: floreat computational neuroscience VISION: A COMPUTATIONAL INVESTIGATION INTO THE HUMAN REPRESENTATION AND PROCESSING OF VISUAL INFORMATION , 2009 .

[59]  Chen Xiao,et al.  Complex networks-based texture extraction and classification method for mineral flotation froth images , 2015 .

[60]  André Ricardo Backes,et al.  A complex network-based approach for boundary shape analysis , 2009, Pattern Recognit..

[61]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[62]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[63]  Loris Nanni,et al.  Survey on LBP based texture descriptors for image classification , 2012, Expert Syst. Appl..

[64]  Bernard De Baets,et al.  Improved texture image classification through the use of a corrosion-inspired cellular automaton , 2014, Neurocomputing.

[65]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[66]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[67]  André Ricardo Backes,et al.  Color texture analysis based on fractal descriptors , 2012, Pattern Recognit..