Laser applications and system considerations in ocular imaging

We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast.

[1]  Bernard P. Gee,et al.  In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. , 2006, Optics express.

[2]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[3]  Barry Cense,et al.  In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[4]  Hirokazu Matsumoto,et al.  Microscopic time-resolved two-dimensional imaging with a femtosecond amplifying optical Kerr gate. , 2002, Applied optics.

[5]  N. S. Kapany,et al.  Retinal Photocoagulation by Lasers , 1963, Nature.

[6]  S A Burns,et al.  Foveal cone photopigment distribution: small alterations associated with macular pigment distribution. , 1998, Investigative ophthalmology & visual science.

[7]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[8]  Computer controlled color mixer with laser primaries , 1981, Vision Research.

[9]  Ivanov,et al.  Theory of high-harmonic generation by low-frequency laser fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[10]  David H Sliney,et al.  Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Ann E Elsner,et al.  Improved contrast of subretinal structures using polarization analysis. , 2003, Investigative ophthalmology & visual science.

[12]  Toyohiko Yatagai,et al.  Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry. , 2008, Journal of biomedical optics.

[13]  M D Duncan,et al.  Time-gated imaging through scattering media using stimulated Raman amplification. , 1991, Optics letters.

[14]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[15]  P. Detwiler,et al.  Optical recording of light-evoked calcium signals in the functionally intact retina. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[17]  James G Fujimoto,et al.  Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. , 2005, Optics express.

[18]  Stephen A. Burns,et al.  Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration. , 2000, Optics express.

[19]  Kate Grieve,et al.  In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography. , 2005, Optics express.

[20]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[21]  Frank G Holz,et al.  DIGITAL SIMULTANEOUS FLUORESCEIN AND INDOCYANINE GREEN ANGIOGRAPHY, AUTOFLUORESCENCE, AND RED-FREE IMAGING WITH A SOLID-STATE LASER-BASED CONFOCAL SCANNING LASER OPHTHALMOSCOPE , 2005, Retina.

[22]  2.2 microm axial resolution optical coherence tomography based on a 400 nm-bandwidth superluminescent diode. , 2006, Scanning.

[23]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[24]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[25]  Ann E Elsner,et al.  Improved contrast of peripapillary hyperpigmentation using polarization analysis. , 2005, Investigative ophthalmology & visual science.

[26]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[27]  R. Maciejko,et al.  Development of Broadband Sources Based on Semiconductor Optical Amplifiers and Erbium-Doped Fiber Amplifiers for Optical Coherence Tomography , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[29]  Ingolf V. Hertel,et al.  Ultrafast dynamics in isolated molecules and molecular clusters , 2006 .

[30]  Kerrie H. Lodowski,et al.  Two-photon microscopy: shedding light on the chemistry of vision. , 2007, Biochemistry.

[31]  J. Fujimoto,et al.  Optical coherence microscopy in scattering media. , 1994, Optics letters.

[32]  M. Hopkinson,et al.  High-Power and Broadband Quantum Dot Superluminescent Diodes Centered at 1250 nm for Optical Coherence Tomography , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  C K Hitzenberger,et al.  Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. , 2000, Optics letters.

[34]  Ann E. Elsner,et al.  Three dimensional imaging in age-related macular degeneration. , 2001, Optics express.

[35]  Renu Tripathi,et al.  Spectral shaping for non-Gaussian source spectra in optical coherence tomography. , 2002, Optics letters.

[36]  J. Fujimoto,et al.  Femtosecond optical ranging in biological systems. , 1986, Optics letters.

[37]  J. Fraser,et al.  Time-gated Fourier-domain optical coherence tomography. , 2007, Optics letters.

[38]  Teresa C. Chen,et al.  High-speed imaging of human retina in vivo with swept-source optical coherence tomography. , 2006, Optics express.

[39]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[40]  Stephen A. Burns,et al.  Infrared imaging of sub-retinal structures in the human ocular fundus , 1996, Vision Research.

[41]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[42]  Hui Sun,et al.  Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells. , 2006, Journal of biomedical optics.

[43]  J. Dowling The Retina: An Approachable Part of the Brain , 1988 .

[44]  R. Alfano,et al.  Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate , 1991, Science.

[45]  Bruce J Tromberg,et al.  Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence. , 2002, Optics letters.

[46]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[47]  A. Elsner,et al.  [Evaluation of macular perimetry in patients with age-related macular degeneration using the scanning laser ophthalmoscope]. , 2007, Arquivos brasileiros de oftalmologia.

[48]  R. Chipman,et al.  Blood oxyhemoglobin saturation measurements by blue-green spectral shift. , 2007, Journal of biomedical optics.

[49]  Daniel X Hammer,et al.  Compact scanning laser ophthalmoscope with high-speed retinal tracker. , 2003, Applied optics.

[50]  S A Burns,et al.  Cone spacing and waveguide properties from cone directionality measurements. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[52]  Krzysztof Palczewski,et al.  Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye , 2004, The Journal of cell biology.

[53]  Computer-controlled two-color laser-based optical stimulator for vision research. , 1991, Applied optics.

[54]  Marinko V Sarunic,et al.  Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[55]  W. Drexler,et al.  Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. , 2007, Journal of biomedical optics.

[56]  Daniel X Hammer,et al.  Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. , 2008, Investigative ophthalmology & visual science.

[57]  L. Loew,et al.  Second Harmonic Imaging Microscopy , 2003, Microscopy and Microanalysis.

[58]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[59]  Quinn Smithwick,et al.  Polarimetric imaging and blood vessel quantification. , 2004, Optics express.

[60]  Susana Marcos,et al.  Contrast improvement of confocal retinal imaging by use of phase-correcting plates. , 2002, Optics letters.

[61]  J. Fujimoto,et al.  Spectroscopic optical coherence tomography. , 2000 .

[62]  J. Fujimoto,et al.  Swept source optical coherence microscopy using a Fourier domain mode-locked laser. , 2007, Optics express.

[63]  Masahiro Miura,et al.  GRADING OF INFRARED CONFOCAL SCANNING LASER TOMOGRAPHY AND VIDEO DISPLAYS OF DIGITIZED COLOR SLIDES IN EXUDATIVE AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[64]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[65]  B. Hochheimer,et al.  Second harmonic light generation in the rabbit cornea. , 1982, Applied optics.

[66]  R. D. Ferguson,et al.  Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[67]  Blue on yellow perimetry with scanning laser ophthalmoscopy in patients with age related macular disease , 2005, British Journal of Ophthalmology.

[68]  T. Yatagai,et al.  High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. , 2007, Optics express.

[69]  A. Elsner,et al.  Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration , 2007, Eye.

[70]  N Tsurumachi,et al.  Wide-field optical coherence tomography: imaging of biological tissues. , 2002, Applied optics.

[71]  S A Burns,et al.  Reflectometry with a scanning laser ophthalmoscope. , 1992, Applied optics.

[72]  Teruo Nishida,et al.  Second-harmonic imaging microscopy of normal human and keratoconus cornea. , 2007, Investigative ophthalmology & visual science.

[73]  I. Walmsley,et al.  The role of dispersion in ultrafast optics , 2001 .

[74]  James V Jester,et al.  Application of second harmonic imaging microscopy to assess structural changes in optic nerve head structure ex vivo. , 2007, Journal of biomedical optics.

[75]  J G Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. , 1995, Optics letters.

[76]  R. Richards-Kortum,et al.  Spatially resolved spectral interferometry for determination of subsurface structure. , 1999, Optics letters.

[77]  J. Auran,et al.  Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. , 1995, Ophthalmology.

[78]  Maciej Wojtkowski,et al.  Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source , 2005 .

[79]  Hiroshi Mashimo,et al.  Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. , 2004, Optics express.

[80]  Bo Liu,et al.  Optimal spectral reshaping for resolution improvement in optical coherence tomography. , 2006, Optics express.

[81]  Justin Pedro,et al.  Multiscan time-domain optical coherence tomography for retina imaging. , 2007, Applied optics.

[82]  Robert H. Webb,et al.  Scanning Laser Ophthalmoscope , 1981, IEEE Transactions on Biomedical Engineering.

[83]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[84]  R R Alfano,et al.  Nonmechanical grating-generated scanning coherence microscopy. , 1998, Optics letters.

[85]  Joseph A Izatt,et al.  In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. , 2007, Journal of biomedical optics.

[86]  D. Van Norren,et al.  Imaging retinal densitometry with a confocal scanning laser ophthalmoscope , 1989, Vision Research.

[87]  Joseph A. Izatt,et al.  Spectral domain second-harmonic optical coherence tomography , 2005 .

[88]  Spectral Filtering in OCT System Implemented by Mechanically Induced Long-Period Fiber Grating , 2005 .

[89]  A. Elsner,et al.  Imaging polarimetry in central serous chorioretinopathy. , 2005, American journal of ophthalmology.

[90]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. , 2005, Optics express.

[91]  Pablo Artal,et al.  Adaptive optics with a programmable phase modulator: applications in the human eye. , 2004, Optics express.

[92]  Masato Ohmi,et al.  Ultra-High Resolution Optical Coherence Tomography (OCT) Using a Halogen Lamp as the Light Source , 2003 .

[93]  Ann E Elsner,et al.  Imaging polarimetry in patients with neovascular age-related macular degeneration. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[94]  Norihiko Nishizawa,et al.  Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. , 2004, Optics express.

[95]  A. Elsner,et al.  Angioscotometry with the scanning laser ophthalmoscope. Comparison of the effect of different wavelengths. , 1996, Investigative ophthalmology & visual science.

[96]  Yiannis Koutalos,et al.  Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. , 2005, Biophysical journal.

[97]  A. Podoleanu Unbalanced versus balanced operation in an optical coherence tomography system. , 2000, Applied optics.

[98]  S. Yakubovich,et al.  Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550 nm , 2003 .

[99]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[100]  R. Zawadzki,et al.  Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography. , 2001, Optics express.

[101]  Kate Grieve,et al.  Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. , 2004, Investigative ophthalmology & visual science.

[102]  P. Artal,et al.  Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator , 2005, Vision Research.

[103]  Timothy A. Birks,et al.  Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .

[104]  M Intaglietta,et al.  Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases. , 1989, American journal of ophthalmology.

[105]  C. Dorrer,et al.  Spectral resolution and sampling issues in Fourier-transform spectral interferometry , 2000 .

[106]  P. Georges,et al.  Video rate depth-resolved two-dimensional imaging through turbid media by femtosecond parametric amplification. , 2000, Optics letters.

[107]  Masahiko Usui,et al.  Imaging polarimetry and retinal blood vessel quantification at the epiretinal membrane. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[108]  C L Trempe,et al.  Spatial extent of pigment epithelial detachments in age-related macular degeneration. , 1999, Ophthalmology.

[109]  Maggie L. Gordon,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. , 2003, Optics express.

[110]  Oscar E. Martínez,et al.  3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region , 1987 .

[111]  Rick Trebino,et al.  The Measurement of Ultrashort Light Pulses—Simple Devices, Complex Pulses , 2004 .

[112]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[113]  Ivan V. Tomov,et al.  High-resolution frequency-domain second-harmonic optical coherence tomography. , 2007 .

[114]  Andrew M Rollins,et al.  Ultrahigh-resolution optical coherence tomography at 1.15 mum using photonic crystal fiber with no zero-dispersion wavelengths. , 2007, Optics express.

[115]  J. Izatt,et al.  Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. , 2000, Optics letters.

[116]  H Saint-Jalmes,et al.  Full-field optical coherence microscopy. , 1998, Optics letters.

[117]  A. Elsner,et al.  Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. , 1996, Ophthalmology.

[118]  James G Fujimoto,et al.  High-resolution three-dimensional optical coherence tomography imaging of kidney microanatomy ex vivo. , 2007, Journal of biomedical optics.

[119]  B. Hochheimer,et al.  Retinal polarization effects. , 1982, Applied optics.

[120]  R. Weinreb,et al.  Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. , 1992, Applied optics.

[121]  S A Burns,et al.  Direct measurement of human-cone-photoreceptor alignment. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[122]  Stefan Kray,et al.  Simultaneous dual-band ultra-high resolution optical coherence tomography. , 2007, Optics express.

[123]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[124]  A. Fercher,et al.  Speckle reduction in optical coherence tomography by frequency compounding. , 2003, Journal of biomedical optics.

[125]  C. Koester,et al.  INTRAOCULAR TEMPERATURE CHANGES PRODUCED BY LASER COAGULATION * , 1963, Acta ophthalmologica. Supplementum.

[126]  J. Fujimoto,et al.  Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. , 2003, Archives of ophthalmology.

[127]  Jannick P Rolland,et al.  Spectral shaping to improve the point spread function in optical coherence tomography. , 2003, Optics letters.

[128]  A. Fercher,et al.  Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. , 2003, Optics express.

[129]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[130]  A. Elsner,et al.  Characteristics of exudative age-related macular degeneration determined in vivo with confocal and indirect infrared imaging. , 1996, Ophthalmology.

[131]  A. Elsner,et al.  Indocyanine green choroidal videoangiography: a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera. , 1993, Retina.

[132]  Leslie M Loew,et al.  Second harmonic imaging microscopy. , 2003, Methods in enzymology.

[133]  Claudio Vinegoni,et al.  Spectroscopic spectral-domain optical coherence microscopy. , 2006, Optics letters.

[134]  Daniel X Hammer,et al.  Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[135]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[136]  J. Fujimoto,et al.  High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. , 2007, Optics letters.

[137]  C Dunsby,et al.  TOPICAL REVIEW: Techniques for depth-resolved imaging through turbid media including coherence-gated imaging , 2003 .

[138]  J. Weiter,et al.  In vivo measurement of lipofuscin in Stargardt's disease--Fundus flavimaculatus. , 1995, Investigative ophthalmology & visual science.

[139]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.