Toeplitz Minors

We give a new proof of the strong Szeg� limit theorem estimating the determinants of Toeplitz matrices using symmetric function theory. We also obtain asymptotics for Toeplitz minors.

[1]  Richard P. Stanley,et al.  Graph colorings and related symmetric functions: ideas and applications A description of results, interesting applications, & notable open problems , 1998, Discret. Math..

[2]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[3]  Harold Widom Inversion of Toeplitz matrices II , 1959 .

[4]  Craig A. Tracy,et al.  On the Limit of Some Toeplitz-Like Determinants , 2002, SIAM J. Matrix Anal. Appl..

[5]  Alexei Borodin,et al.  A Fredholm determinant formula for Toeplitz determinants , 1999, math/9907165.

[6]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[7]  Harold Widom,et al.  Inversion of Toeplitz matrices II , 1959 .

[8]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[9]  C. Tracy,et al.  On the distributions of the lengths of the longest monotone subsequences in random words , 1999, math/9904042.

[10]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[11]  G. Sankaranarayanan,et al.  Ordered cycle lengths in a random permutation. , 1971 .

[12]  G. Baxter Polynomials defined by a difference system , 1960 .

[13]  Albert Edrei,et al.  On the Generating Functions of Totally Positive Sequences. , 1951 .

[14]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[15]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[16]  G. Szegö,et al.  [52–2] On Certain Hermitian Forms Associated with the Fourier Series of a Positive Function , 1982 .

[17]  Craig A. Tracy,et al.  On the Distributions of the Lengths of the Longest Increasing and Decreasing Subsequences in Random Words , 1999 .

[18]  I. Hirschman,et al.  On a theorem of Szegö, Kac, and Baxter , 1965 .

[19]  Jason E. Fulman Applications of Symmetric Functions to Cycle and Increasing Subsequence Structure after Shuffles , 2001 .

[20]  Kurt Johansson,et al.  ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .

[21]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[22]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[23]  Leon M. Hall,et al.  Special Functions , 1998 .