PHASE AND AMPLITUDE CHARACTERISTICS OF HIGHER-ACCURACY NONLINEAR DISPERSIVE MODELS

[1]  Гаяз Салимович Хакимзянов,et al.  Two-dimensional model of wave hydrodynamics with high accuracy dispersion relation. II. Fourth, sixth and eighth orders , 2021, Вычислительные технологии.

[2]  M. Brocchini,et al.  Long waves approaching the coast: Green’s law generalization , 2019, Journal of Ocean Engineering and Marine Energy.

[3]  V. Duchêne Rigorous justification of the Favrie–Gavrilyuk approximation to the Serre–Green–Naghdi model , 2018, Nonlinearity.

[4]  S. Gavrilyuk,et al.  A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves , 2017 .

[5]  Mario Ricchiuto,et al.  On the nonlinear behaviour of Boussinesq type models: Amplitude-velocity vs amplitude-flux forms , 2015 .

[6]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[7]  Harry B. Bingham,et al.  A new Boussinesq method for fully nonlinear waves from shallow to deep water , 2002, Journal of Fluid Mechanics.

[8]  H. Schäffer,et al.  Higher–order Boussinesq–type equations for surface gravity waves: derivation and analysis , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  V. Liapidevskii Shallow-water equations with dispersion. Hyperbolic model , 1998 .

[10]  P. A. Madsen,et al.  A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry , 1992 .

[11]  D. Dutykh,et al.  Dispersive Shallow Water Waves , 2020 .

[12]  Diana Sommer,et al.  Waves On Water Of Variable Depth , 2016 .

[13]  Владимир Моисеевич Кушнир,et al.  Effects of surface gravity waveson coastal ocean structures , 2013 .