An analysis of the migration rates for biogeography-based optimization

Biogeography-Based Optimization (BBO), inspired by the science of biogeography, is a novel population-based Evolutionary Algorithm (EA). For optimization problems, BBO builds the matching mathematical model of the organism distribution. In this evolutionary mechanism, species migrating among islands can be considered as the information transition among different solutions represented by habitats. Solutions are reassembled according to migration rates. However, so far, the migration models are generally designed by empirical studies. This leads to immature conclusions that are unreliable. To complete the previous works, this paper investigates transition probability matrices of BBO to clarify that the transition probability of median number of species is not the only determinant factor to influence performance. The impact of migration rates on BBO is mathematically discussed, which is helpful to design migration models. Using numerical simulations, the BBO and several other classical evolutionary algorithms are compared. The simulations also comprehensively explain the effect of the BBO's properties on its performance including dimension, population size, and migration models. The results validate the theoretical analysis in this paper.

[1]  Garrison W. Greenwood,et al.  Static Task Allocation Using (mu, lambda) Evolutionary Strategies , 1996, Inf. Sci..

[2]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[3]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[4]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[5]  JOSEPH JOHN MURPHY,et al.  Preponderance of West Winds , 1871, Nature.

[6]  Dan Simon,et al.  Markov Models for Biogeography-Based Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[8]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[9]  Bin Li,et al.  Multi-strategy ensemble particle swarm optimization for dynamic optimization , 2008, Inf. Sci..

[10]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[11]  Haiping Ma,et al.  An analysis of the equilibrium of migration models for biogeography-based optimization , 2010, Inf. Sci..

[12]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[13]  James H. Brown,et al.  Microbial biogeography: putting microorganisms on the map , 2006, Nature Reviews Microbiology.

[14]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[15]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[16]  Nikolaus Hansen,et al.  Invariance, Self-Adaptation and Correlated Mutations and Evolution Strategies , 2000, PPSN.

[17]  Wenyin Gong,et al.  DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization , 2010, Soft Comput..

[18]  Paul H. Calamai,et al.  Exchange strategies for multiple Ant Colony System , 2007, Inf. Sci..

[19]  EvolutionaryStrategiesAjay K. Gupta Static Task Allocation Using (;) Evolutionary Strategies , 1996 .

[20]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[23]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Peng Shi,et al.  Using investment satisfaction capability index based particle swarm optimization to construct a stock portfolio , 2011, Inf. Sci..

[26]  Karsten Emil Capion,et al.  Optimal charging of electric drive vehicles in a market environment , 2011 .

[27]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[28]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[29]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[30]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[31]  Harish Kundra,et al.  An Integrated Approach to Biogeography Based Optimization with case based reasoning for retrieving Groundwater Possibility , 2009 .

[32]  Dan Simon,et al.  Population distributions in biogeography-based optimization algorithms with elitism , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[33]  Dan Simon,et al.  Biogeography-based optimization and the solution of the power flow problem , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[34]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[35]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[36]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[37]  K. G. Srinivasa,et al.  A self-adaptive migration model genetic algorithm for data mining applications , 2007, Inf. Sci..

[38]  Shigenobu Kobayashi,et al.  A real-coded genetic algorithm using the unimodal normal distribution crossover , 2003 .

[39]  Dan Simon,et al.  Blended biogeography-based optimization for constrained optimization , 2011, Eng. Appl. Artif. Intell..

[40]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[41]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[42]  J. Zelenka,et al.  Comparison of artificial immune systems with the particle swarm optimization in job-shop scheduling problem , 2011, 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI).

[43]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[44]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[45]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[46]  Dan Simon,et al.  Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms , 2011, Inf. Sci..

[47]  Feng Qian,et al.  A hybrid genetic algorithm with the Baldwin effect , 2010, Inf. Sci..

[48]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[49]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[50]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[51]  Edmund K. Burke,et al.  The Speciating Island Model: An alternative parallel evolutionary algorithm , 2006, J. Parallel Distributed Comput..

[52]  S.X. Yang,et al.  An efficient dynamic system for real-time robot-path planning , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[53]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[54]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010, Int. J. Math. Model. Numer. Optimisation.

[55]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[56]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[57]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[58]  Ville Tirronen,et al.  Scale factor local search in differential evolution , 2009, Memetic Comput..