A Hierarchy of Partial Order Temporal Properties

We propose a classification of partial order temporal properties into a hierarchy, which is a generalization of the safety-progress hierarchy of Chang, Manna and Pnueli. The classes of the hierarchy are characterized through three views: language-theoretic, topological and temporal. Instead of the domain of strings, we take the domain of Mazurkiewicz traces as a basis for our considerations. For the language-theoretic view, we propose operations on trace languages which define the four main classes of properties: safety, guarantee, persistence and response. These four classes are shown to correspond precisely to the two lower levels of the Borel hierarchy of the Scott topology of the domain of traces relativized to the infinite traces. In addition, a syntactic characterization of the classes is provided in terms of a sublogic of the Generalized Interleaving Set Temporal Logic GISTL (an extension of ISTL).

[1]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[2]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[3]  Bowen Alpern,et al.  Defining Liveness , 1984, Inf. Process. Lett..

[4]  Marta Z. Kwiatkowska,et al.  On topological characterization of behavioural properties , 1991 .

[5]  Marta Z. Kwiatkowska,et al.  On the Domain of Traces and Sequential Composition , 1991, TAPSOFT, Vol.1.

[6]  Amir Pnueli,et al.  Proving Partial Order Liveness Properties , 1990, ICALP.

[7]  Doron A. Peled,et al.  Interleaving set temporal logic , 1987, PODC '87.

[8]  Zohar Manna,et al.  Completing the Temporal Picture , 1989, Theor. Comput. Sci..

[9]  Antoni W. Mazurkiewicz,et al.  Basic notions of trace theory , 1988, REX Workshop.

[10]  Volker Diekert On the Concentration of Infinite Traces , 1993, Theor. Comput. Sci..

[11]  WOJCIECH PENCZEK,et al.  Temporal Logics for Trace Systems: On Automated Verification , 1993, Int. J. Found. Comput. Sci..

[12]  Leslie Lamport,et al.  Proving the Correctness of Multiprocess Programs , 1977, IEEE Transactions on Software Engineering.

[13]  Zohar Manna,et al.  Completing the Temporal Picture , 1991, Theor. Comput. Sci..

[14]  Andrzej Szalas,et al.  A Complete Axiomatic Characterization of First-Order Temporal Logic of Linear Time , 1987, Theor. Comput. Sci..

[15]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[16]  Grzegorz Rozenberg,et al.  Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency , 1988, Lecture Notes in Computer Science.

[17]  Marta Z. Kwiatkowska,et al.  A Metric for Traces , 1990, Inf. Process. Lett..

[18]  Zohar Manna,et al.  The anchored version of the temporal framework , 1988, REX Workshop.

[19]  Volker Diekert On the Concatenation of Infinite Traces , 1991, STACS.

[20]  Zohar Manna,et al.  A hierarchy of temporal properties (invited paper, 1989) , 1990, PODC '90.