Similarity-First Search: A New Algorithm with Application to Robinsonian Matrix Recognition

We present a new efficient combinatorial algorithm for recognizing if a given symmetric matrix is Robinsonian, i.e., if its rows and columns can be simultaneously reordered so that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. As main ingredient we introduce a new algorithm, named Similarity-First-Search (SFS), which extends Lexicographic Breadth-First Search (Lex-BFS) to weighted graphs and which we use in a multisweep algorithm to recognize Robinsonian matrices. Since Robinsonian binary matrices correspond to unit interval graphs, our algorithm can be seen as a generalization to weighted graphs of the 3-sweep Lex-BFS algorithm of Corneil for recognizing unit interval graphs. This new recognition algorithm is extremely simple and it exploits new insight on the combinatorial structure of Robinsonian matrices. For an $n\times n$ nonnegative matrix with $m$ nonzero entries, it terminates in $n-1$ SFS sweeps, with overall running time $O(n^2 +nm\log n)$.

[1]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[2]  Alexandre d'Aspremont,et al.  Convex Relaxations for Permutation Problems , 2013, SIAM J. Matrix Anal. Appl..

[3]  Morgan Seston Dissimilarités de Robinson : algorithmes de reconnaissance et d'approximation , 2008 .

[4]  Ekkehard Köhler,et al.  On end-vertices of Lexicographic Breadth First Searches , 2010, Discret. Appl. Math..

[5]  Sergey N. Rodin,et al.  Graphs and Genes , 1984 .

[6]  H. D. Simon,et al.  A spectral algorithm for envelope reduction of sparse matrices , 1993, Supercomputing '93. Proceedings.

[7]  Michael Hahsler,et al.  Getting Things in Order: An Introduction to the R Package seriation , 2008 .

[8]  Robert E. Tarjan,et al.  Algorithmic aspects of vertex elimination , 1975, STOC.

[9]  Dominique Fortin,et al.  An Optimal Algorithm To Recognize Robinsonian Dissimilarities , 2014, Journal of Classification.

[10]  Victor Chepoi,et al.  Seriation in the Presence of Errors: A Factor 16 Approximation Algorithm for l∞-Fitting Robinson Structures to Distances , 2011, Algorithmica.

[11]  Klaus Simon A New Simple Linear Algorithm to Recognize Interval Graphs , 1991, Workshop on Computational Geometry.

[12]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[13]  Michel Habib,et al.  A tie-break model for graph search , 2015, Discret. Appl. Math..

[14]  Derek G. Corneil,et al.  Lexicographic Breadth First Search - A Survey , 2004, WG.

[15]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[16]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[17]  Alexandre d'Aspremont,et al.  SerialRank: Spectral Ranking using Seriation , 2014, NIPS.

[18]  Victor Chepoi,et al.  Seriation in the Presence of Errors: NP-Hardness of l∞ -Fitting Robinson Structures to Dissimilarity Matrices , 2009, J. Classif..

[19]  Tingting Mu,et al.  A New Measure for Analyzing and Fusing Sequences of Objects , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Monique Laurent,et al.  A Lex-BFS-based recognition algorithm for Robinsonian matrices , 2015, Discret. Appl. Math..

[21]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[22]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[23]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[24]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[25]  W. S. Robinson A Method for Chronologically Ordering Archaeological Deposits , 1951, American Antiquity.

[26]  Victor Chepoi,et al.  Recognition of Robinsonian dissimilarities , 1997 .

[27]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[28]  Michel Habib,et al.  A Simple Linear Time LexBFS Cograph Recognition Algorithm , 2003, WG.

[29]  Michel Habib,et al.  A new LBFS-based algorithm for cocomparability graph recognition , 2017, Discret. Appl. Math..

[30]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..