Ablation behavior of ZrB2–SiC–ZrO2 ceramic composites by means of the oxyacetylene torch

[1]  Xinghong Zhang,et al.  Thermal shock behavior of ZrB2–SiC ultra-high temperature ceramics with addition of zirconia , 2009 .

[2]  Jiecai Han,et al.  Microstructure and mechanical properties of zirconia-toughened ZrB2–MoSi2 composites prepared by hot-pressing , 2009 .

[3]  Jingyi Deng,et al.  Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2–SiC composites , 2009 .

[4]  Jiecai Han,et al.  High-Temperature Oxidation at 1900°C of ZrB2-xSiC Ultrahigh-Temperature Ceramic Composites , 2008 .

[5]  Xinghong Zhang,et al.  Microstructure and Mechanical Properties of ZrB2-Based Composites Reinforced and Toughened by Zirconia , 2008 .

[6]  Ping Hu,et al.  Structure evolution of ZrB_2–SiC during the oxidation in air , 2008 .

[7]  Jiecai Han,et al.  Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions , 2008 .

[8]  Jiecai Han,et al.  Oxidation-resistant ZrB2-SiC composites at 2200 °C , 2008 .

[9]  Jiecai Han,et al.  Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C , 2007 .

[10]  N. Padture,et al.  Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids , 2007 .

[11]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[12]  F. Monteverde,et al.  Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application , 2007 .

[13]  G. Hilmas,et al.  Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC , 2007 .

[14]  R. Savino,et al.  Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions , 2007 .

[15]  G. Hilmas,et al.  Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C , 2007 .

[16]  Guobing Zhang,et al.  Effect of ZrB2 on the ablation properties of carbon composites , 2006 .

[17]  F. Monteverde Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2 , 2006 .

[18]  F. Monteverde The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures , 2005 .

[19]  A. Bellosi,et al.  Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates , 2005 .

[20]  D. Sciti,et al.  Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite , 2005 .

[21]  Patrick M. Kelly,et al.  Transformation Toughening in Zirconia‐Containing Ceramics , 2004 .

[22]  Donald T. Ellerby,et al.  Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .

[23]  E. Opila,et al.  Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions , 2004 .

[24]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[25]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[26]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[27]  Tetsuji Sato,et al.  Mechanical properties of ytterbia stabilized zirconia ceramics (Yb-TZP) fabricated from powders prepared by co-precipitation method , 2000 .

[28]  K. Upadhya,et al.  Materials for ultrahigh temperature structural applications , 1997 .