Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells
暂无分享,去创建一个
Using first principles quantum mechanics [nonlocal density functional theory (B3LYP)], we calculated the 13 most likely intermediate species for methanol oxidation on clusters of all 2nd and 3rd row Group VIII transition metals for all three likely binding sites (top, bridge, and cap). This comprehensive set of binding energies and structures allows a detailed analysis of possible reaction mechanisms and how they change for different metals. This illustrates the role in which modern quantum chemical methods can be used to provide data for combinatorial strategies for discovering and designing new catalysts. We find that methanol dehydrogenation is most facile on Pt, with the hydrogens preferentially stripped off the carbon end. However, water dehydrogenation is most facile on Ru. These results support the bifunctional mechanism for methanol oxidation on Pt−Ru alloys in direct methanol fuel cells (DMFCs). We find that pure Os is capable of performing both functionalities without cocatalyst. We suggest that...
[1] John C. Slater,et al. Quantum Theory of Molecules and Solids Vol. 4: The Self‐Consistent Field for Molecules and Solids , 1974 .
[2] John C. Slater,et al. Quantum Theory of Molecules and Solids , 1951 .