Evaluation of IMERG Over CONUS Complex Terrain Using Environmental Variables

Satellite‐based precipitation products (SPPs) provide extensive spatial and temporal coverage globally but are challenged in complex terrain. This study aims at understanding uncertainties of SPP estimation due to topographically induced rainfall. Environmental and physical parameters, that is, orographically forced upward motion and horizontal moisture flux convergence, are considered to condition precipitation mechanisms for a detailed uncertainty analysis. The Global Precipitation Measurement (GPM) precipitation product Integrated Multi‐Satellite Retrievals for GPM (IMERG) is compared at its native resolution against a high quality and accurate radar and rain gauge precipitation reference Ground Validation Multi‐Radar Multi‐Sensor (GV‐MRMS). Conditional analysis of IMERG using environmental parameters is conducted over mountainous terrain. The highest GV‐MRMS mean rainfall rate is found to be associated with positive high Q and moderate w values, confirming that vigorous moisture flux convergence is a strong condition for heavy rainfall. IMERG shows over‐ and underestimation for positive w and Q when GV‐MRMS rainfall magnitudes between 0.8 and 13 mm h−1.

[1]  Noah S. Brauer,et al.  Evaluation of IMERG satellite precipitation over the land-coast-ocean continuum – Part II: Quantification , 2022, Journal of Hydrometeorology.

[2]  J. Gourley,et al.  Evaluation of IMERG satellite precipitation over the land-coast-ocean continuum – Part I: Detection , 2021, Journal of Hydrometeorology.

[3]  W. Petersen,et al.  Integrated Multi-satellite Evaluation for the Global Precipitation Measurement: Impact of Precipitation Types on Spaceborne Precipitation Estimation , 2020 .

[4]  Che-Hao Chang,et al.  Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions , 2019, Remote. Sens..

[5]  E. Anagnostou,et al.  Estimating extreme precipitation using multiple satellite-based precipitation products , 2019, Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment.

[6]  Y. Hong,et al.  Probabilistic precipitation rate estimates with space‐based infrared sensors , 2018, Quarterly Journal of the Royal Meteorological Society.

[7]  B. Adler,et al.  Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes , 2018 .

[8]  Giulia Panegrossi,et al.  Passive Microwave Rainfall Error Analysis Using High-Resolution X-Band Dual-Polarization Radar Observations in Complex Terrain , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Munehisa K. Yamamoto,et al.  Further Improvement of the Heavy Orographic Rainfall Retrievals in the GSMaP Algorithm for Microwave Radiometers , 2017 .

[10]  Emmanouil N. Anagnostou,et al.  Satellite Rainfall Error Analysis with the Use of High-Resolution X-Band Dual-Polarization Radar Observations Over the Italian Alps , 2017 .

[11]  Emmanouil N. Anagnostou,et al.  Multiregional Satellite Precipitation Products Evaluation over Complex Terrain , 2016 .

[12]  G. Grell,et al.  A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh , 2016 .

[13]  Y. Hong,et al.  Impact of sub‐pixel rainfall variability on spaceborne precipitation estimation: evaluating the TRMM 2A25 product , 2015 .

[14]  Y. Hong,et al.  Research Framework to Bridge from the Global Precipitation Measurement Mission Core Satellite to the Constellation Sensors Using Ground‐Radar‐Based National Mosaic QPE , 2014 .

[15]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[16]  Grant W. Petty,et al.  Improved Passive Microwave Retrievals of Rain Rate over Land and Ocean. Part II: Validation and Intercomparison , 2013 .

[17]  Takuji Kubota,et al.  Improvement of TMI Rain Retrievals in Mountainous Areas , 2013 .

[18]  Faisal Hossain,et al.  Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Yang Hong,et al.  Toward a Framework for Systematic Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground Radar–Based National Mosaic QPE , 2012 .

[20]  R. Houze Orographic effects on precipitating clouds , 2012 .

[21]  M. Hagen,et al.  Influence of the wind profile on the initiation of convection in mountainous terrain , 2011 .

[22]  Pietro Ceccato,et al.  Validation and Intercomparison of Satellite Rainfall Estimates over Colombia , 2010 .

[23]  F. Hirpa,et al.  Evaluation of High-Resolution Satellite Precipitation Products over Very Complex Terrain in Ethiopia , 2010 .

[24]  Hervé Andrieu,et al.  Bollène-2002 Experiment: Radar Quantitative Precipitation Estimation in the Cévennes–Vivarais Region, France. , 2009 .

[25]  Takuji Kubota,et al.  Development of Nonuniform Beamfilling Correction Method in Rainfall Retrievals for Passive Microwave Radiometers over Ocean Using TRMM Observations , 2009 .

[26]  S. J. Connor,et al.  Validation of high‐resolution satellite rainfall products over complex terrain , 2008 .

[27]  B. Sohn,et al.  Use of Numerical Forecasts for Improving TMI Rain Retrievals over the Mountainous Area in Korea , 2008 .

[28]  David M. Schultz,et al.  The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives , 2005 .

[29]  Ronald B. Smith,et al.  Evaluation of an Orographic Precipitation Model , 2005 .

[30]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .