Combinatorial secant varieties

The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal of the secant ideal coincides with the secant ideal of the initial ideal. For toric varieties, this leads to the notion of delightful triangulations of convex polytopes.

[1]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[2]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[3]  David Mond,et al.  Stochastic factorizations, sandwiched simplices and the topology of the space of explanations , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Pietro De Poi,et al.  ON HIGHER SECANT VARIETIES OF RATIONAL NORMAL SCROLLS , 1997 .

[5]  Dmitry N. Kozlov,et al.  Topological obstructions to graph colorings , 2003 .

[6]  A. Geramita,et al.  Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .

[7]  The facet ideal of a simplicial complex , 2002, math/0210110.

[8]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[9]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[10]  Michael L. Catalano-Johnson The possible dimensions of the higher secant varieties , 1996 .

[11]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[12]  Dmitry N. Kozlov,et al.  Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes , 2005 .

[13]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[14]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[15]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[16]  Alessandro Gimigliano,et al.  Secant varieties of Grassmann varieties , 2004 .

[17]  G. Ziegler Lectures on Polytopes , 1994 .

[18]  B. Ulrich,et al.  On the Ideal of an Embedded Join , 2000 .

[19]  A. Conca Ladder determinantal rings , 1995 .

[20]  Claudia Miller,et al.  Mixed Ladder Determinantal Varieties , 2000 .

[21]  Secant varieties of toric varieties , 2005, math/0502344.

[22]  Bernd Sturmfels,et al.  Gröbner bases and Stanley decompositions of determinantal rings , 1990 .

[23]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.