Linear matrix inequality formulation of spectral mask constraints

The design of a finite impulse response filter often involves a spectral 'mask' which the magnitude spectrum must satisfy. This constraint can be awkward because it yields an infinite number of inequality constraints (two for each frequency point). In current practice, spectral masks are often approximated by discretization, but we show that piecewise constant masks can be precisely enforced in a finite and convex manner via linear matrix inequalities. This facilitates the formulation of a diverse class of filter and beamformer design problems as semidefinite programmes. These optimization problems can be efficiently solved using recently developed interior point methods. Our results can be considered as extensions to the well-known positive-real and bounded-real lemmas from the systems and control literature.

[1]  Mihai Anitescu,et al.  The role of linear semi-infinite programming in signal-adapted QMF bank design , 1997, IEEE Trans. Signal Process..

[2]  O. Rioul,et al.  A Remez exchange algorithm for orthonormal wavelets , 1994 .

[3]  T W Parks,et al.  Design of optimal minimum phase FIR filters by direct factorization , 1986 .

[4]  Zhi-Quan Luo,et al.  Design of orthogonal pulse shapes for communications via semidefinite programming , 2000, IEEE Trans. Signal Process..

[5]  Stephen P. Boyd,et al.  FIR Filter Design via Spectral Factorization and Convex Optimization , 1999 .

[6]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[7]  Paul Van Dooren,et al.  Convex optimization over positive polynomials and filter design , 2000 .

[8]  Timothy N. Davidson,et al.  Efficient Design of Waveforms for Robust Pulse , 2001 .

[9]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[10]  Stephen P. Boyd,et al.  FIR filter design via semidefinite programming and spectral factorization , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[11]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[12]  Lieven Vandenberghe,et al.  Interior-point methods for magnitude filter design , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[13]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[14]  F. Lukács Verschärfung des ersten Mittelwertsatzes der Integralrechnung für rationale Polynome , 1918 .

[15]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[16]  O. Herrmann,et al.  Design of nonrecursive digital filters with minimum phase , 1970 .

[17]  J. O. Coleman,et al.  Design of nonlinear-phase FIR filters with second-order cone programming , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[18]  Timothy N. Davidson Efficient evaluation of trade-offs in waveform design for robust pulse amplitude modulation , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[19]  C. Sidney Burrus,et al.  Constrained least square design of FIR filters without specified transition bands , 1996, IEEE Trans. Signal Process..

[20]  T. Kailath,et al.  Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .

[21]  B. Reznick,et al.  Polynomials that are positive on an interval , 2000 .

[22]  Charles A. Micchelli,et al.  Spectral factorization of Laurent polynomials , 1997, Adv. Comput. Math..

[23]  Kenneth Steiglitz,et al.  METEOR: a constraint-based FIR filter design program , 1992, IEEE Trans. Signal Process..

[24]  Timothy N. Davidson,et al.  Efficient design of waveforms for robust pulse amplitude modulation using mean square error criteria , 2000, 2000 10th European Signal Processing Conference.

[25]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[26]  P. Vaidyanathan The discrete-time bounded-real lemma in digital filtering , 1985 .

[27]  J. L. Sullivan,et al.  Peak-constrained least-squares optimization , 1998, IEEE Trans. Signal Process..

[28]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[29]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[30]  Kok Lay Teo,et al.  The dual parameterization approach to optimal least square FIR filter design subject to maximum error constraints , 2000, IEEE Trans. Signal Process..

[31]  Brian D. O. Anderson,et al.  Recursive algorithm for spectral factorization , 1974 .