Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. VI. Analytic basis method for surface functions

We continue development of the theory of reactive (rearrangement) scattering using adiabatically adjusting principal axes hyperspherical (APH) coordinates. The surface functions, functions of the APH hyperangles covering the surface of the internal coordinate sphere, are expanded in analytic basis functions centered in each of the arrangement channels. The rotational functions are associated Legendre polynomials, and the vibrational functions are harmonic functions of an ‘‘anharmonic’’ variable which covers an infinite range, allows accurate Gauss–Hermite quadrature, and includes effects of anharmonicity. Example calculations show that these functions provide an efficient basis which can markedly decrease the computational effort required to generate accurate surface functions.

[1]  L. M. Delves,et al.  TERTIARY AND GENERAL-ORDER COLLISIONS , 1958 .

[2]  J. Launay,et al.  Quantum-mechanical calculation of integral cross sections for the reaction F+H2(v=0, j=0)→FH(v′ j′)+H by the hyperspherical method , 1990 .

[3]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[4]  E. F. Hayes,et al.  Accurate three‐dimensional quantum scattering studies of long‐lived resonances for the reaction He+H+2→HeH++H , 1990 .

[5]  J. Launay,et al.  Hyperspherical close-coupling calculation of integral cross sections for the reaction H+H2→H2+H , 1989 .

[6]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[7]  Shertzer,et al.  Direct numerical solution of the Schrödinger equation for quantum scattering problems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[9]  D. C. Clary,et al.  Chapter 4. Quantum calculations on reactive collisions , 1989 .

[10]  J. Launay,et al.  Quantum mechanical study of the reaction He+H+2→HeH++H with hyperspherical coordinates , 1991 .

[11]  D. Ter Haar,et al.  The Vibrational Levels of an Anharmonic Oscillator , 1946 .

[12]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory , 1987 .

[13]  J. Linderberg,et al.  Numerical implementation of reactive scattering theory , 1989 .

[14]  F. Smith Participation of Vibration in Exchange Reactions , 1959 .

[15]  J. Kress,et al.  Accurate three-dimensional quantum scattering calculations for F + H2 → HF + H with total angular momentum J = 1 , 1990 .

[16]  J. Kress,et al.  Quantum effects in the F+H2→HF+H reaction. Accurate 3D calculations with a realistic potential energy surface , 1989 .

[17]  J. H. Zhang Variational calculation of integral cross sections for the reaction F+H2→HF+H , 1991 .

[18]  J. Kress Accurate three-dimensional quantum scattering calculations for Ne + H+2 → NeH+ + H , 1991 .

[19]  A new numerical procedure for the construction of orthonormal hyperspherical functions , 1989 .

[20]  D. Neuhauser,et al.  Total integral reactive cross sections for F + H2 → HF + H: comparison of converged quantum, quasiclassical trajectory and experimental results , 1991 .

[21]  J. Kress,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. IV. Discrete variable representation (DVR) basis functions and the analysis of accurate results for F+H2 , 1990 .

[22]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[23]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. tests on H+H2 and D+H2 , 1987 .

[24]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[25]  R. Wyatt,et al.  Translational basis set contraction in variational reactive scattering , 1990 .

[26]  A. Kuppermann,et al.  Three‐dimensional quantum mechanical reactive scattering using symmetrized hyperspherical coordinates , 1986 .

[27]  J. Light,et al.  Symmetry‐adapted discrete variable representations , 1988 .

[28]  D. Kouri,et al.  Converged three-dimensional quantum mechanical reaction probabilities and delay times for the F+H2 reaction on a potential energy surface with a realistic exit valley , 1989 .

[29]  F. B. Brown,et al.  An improved potential energy surface for F+H2→HF+H and H+H′F→HF+H′ , 1985 .

[30]  D. Schwenke Compact representation of vibrational wave functions for diatomic molecules , 1991 .

[31]  W. A. Cook,et al.  Comparison of Lanczos and subspace iterations for hyperspherical reaction path calculations , 1989 .

[32]  G. Schatz A three dimensional reactive scattering study of the photodetachment spectrum of ClHCl , 1989 .

[33]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. III. Small θ behavior and corrigenda , 1989 .

[34]  G. Drolshagen,et al.  The adiabatic‐diabatic approach to vibrational inelastic scattering: Theory and study of a simple collinear model , 1980 .

[35]  J. Kress,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. 5. Comparison between two accurate potential energy surfaces for hydrogen atom + hydrogen and deuterium atom + hydrogen , 1990 .

[36]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .