A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota.

[1]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[2]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[3]  Bishwo N. Adhikari,et al.  Carbohydrate-Active Enzymes in Pythium and Their Role in Plant Cell Wall and Storage Polysaccharide Degradation , 2013, PloS one.

[4]  Liping Zhao The gut microbiota and obesity: from correlation to causality , 2013, Nature Reviews Microbiology.

[5]  E. Martens,et al.  Dynamic responses of Bacteroides thetaiotaomicron during growth on glycan mixtures , 2013, Molecular microbiology.

[6]  H. Smidt,et al.  A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. , 2013, The Journal of nutrition.

[7]  Brandi L. Cantarel,et al.  Complex Carbohydrate Utilization by the Healthy Human Microbiome , 2012, PloS one.

[8]  A. Macpherson,et al.  Interactions Between the Microbiota and the Immune System , 2012, Science.

[9]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[10]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[11]  H. Flint,et al.  Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon , 2012, The ISME Journal.

[12]  Patrice D Cani,et al.  Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice , 2012, Nutrition & Diabetes.

[13]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[14]  H. Harmsen,et al.  Cultured Representatives of Two Major Phylogroups of Human Colonic Faecalibacterium prausnitzii Can Utilize Pectin, Uronic Acids, and Host-Derived Substrates for Growth , 2011, Applied and Environmental Microbiology.

[15]  E. Zoetendal,et al.  Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. , 2011, Environmental microbiology.

[16]  I. Martínez,et al.  Barcoded Pyrosequencing Reveals That Consumption of Galactooligosaccharides Results in a Highly Specific Bifidogenic Response in Humans , 2011, PloS one.

[17]  W. Verstraete,et al.  The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. , 2011, FEMS microbiology reviews.

[18]  T. Soboleva,et al.  Bacterial biofilms associated with food particles in the human large bowel. , 2011, Molecular nutrition & food research.

[19]  P. Brigidi,et al.  Ageing of the human metaorganism: the microbial counterpart , 2011, AGE.

[20]  J. Parkhill,et al.  Dominant and diet-responsive groups of bacteria within the human colonic microbiota , 2011, The ISME Journal.

[21]  R. Mackie,et al.  Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes , 2011, Molecular microbiology.

[22]  Jaehyoung Kim,et al.  Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects , 2010, PloS one.

[23]  A. Bernalier-Donadille,et al.  The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. , 2010, FEMS microbiology ecology.

[24]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[25]  J. Sonnenburg,et al.  Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations , 2010, Cell.

[26]  A. Kyriacou,et al.  Prebiotic potential of barley derived β-glucan at low intake levels: a randomised, double-blinded, placebo-controlled clinical study. , 2010 .

[27]  A. Keshavarzian,et al.  Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. , 2010, The British journal of nutrition.

[28]  H. Scheller,et al.  Biosynthesis of Pectin1 , 2010, Plant Physiology.

[29]  H. Gilbert The Biochemistry and Structural Biology of Plant Cell Wall Deconstruction , 2010, Plant Physiology.

[30]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[31]  T. R. Licht,et al.  Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin , 2010, BMC Microbiology.

[32]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[33]  Harry J Flint,et al.  The role of pH in determining the species composition of the human colonic microbiota. , 2009, Environmental microbiology.

[34]  W. Verstraete,et al.  Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. , 2009, FEMS microbiology ecology.

[35]  Eric C. Martens,et al.  Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm , 2009, The Journal of Biological Chemistry.

[36]  W. Helbert,et al.  Enzymatic degradation of κ-carrageenan in aqueous solution. , 2009, Biomacromolecules.

[37]  A. Keshavarzian,et al.  Starch-entrapped microspheres extend in vitro fecal fermentation, increase butyrate production, and influence microbiota pattern. , 2009, Molecular nutrition & food research.

[38]  J. Gordon,et al.  Coordinate Regulation of Glycan Degradation and Polysaccharide Capsule Biosynthesis by a Prominent Human Gut Symbiont , 2009, The Journal of Biological Chemistry.

[39]  Eleni Gomes,et al.  Pectin and Pectinases: Production, Characterization and Industrial Application of Microbial Pectinolytic Enzymes , 2009 .

[40]  G. Fahey,et al.  In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. , 2009, Journal of agricultural and food chemistry.

[41]  T. Wiele,et al.  Arabinoxylan‐oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem , 2008, Microbial biotechnology.

[42]  J. Gordon,et al.  Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. , 2008, Cell host & microbe.

[43]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[44]  G. Holtrop,et al.  Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii , 2008, British Journal of Nutrition.

[45]  G. Gibson,et al.  Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. , 2008, Journal of agricultural and food chemistry.

[46]  P. Shewry,et al.  In vitro fermentation of oat and barley derived beta-glucans by human faecal microbiota. , 2008, FEMS microbiology ecology.

[47]  D. Mohnen Pectin structure and biosynthesis. , 2008, Current opinion in plant biology.

[48]  B. White,et al.  Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis , 2008, Nature Reviews Microbiology.

[49]  F. Guillon,et al.  Wheat arabinoxylans : Exploiting variation in amount and composition to develop enhanced varieties , 2007 .

[50]  J. Juśkiewicz,et al.  Caecal parameters of rats fed diets supplemented with inulin in exchange for sucrose , 2007, Archives of animal nutrition.

[51]  W. Verstraete,et al.  Inulin‐type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects , 2007, Journal of applied microbiology.

[52]  R. Bibiloni,et al.  Supplementation of the Diet with High-Viscosity Beta-Glucan Results in Enrichment for Lactobacilli in the Rat Cecum , 2006, Applied and Environmental Microbiology.

[53]  J. Doré,et al.  Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: a Cross-Sectional Study , 2006, Applied and Environmental Microbiology.

[54]  P. R. Kulkarni,et al.  Resistant Starch-A Review. , 2006, Comprehensive reviews in food science and food safety.

[55]  M. Rossi,et al.  Fermentation of Fructooligosaccharides and Inulin by Bifidobacteria: a Comparative Study of Pure and Fecal Cultures , 2005, Applied and Environmental Microbiology.

[56]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[57]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[58]  L. Lynd,et al.  Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems , 2004, Biotechnology and bioengineering.

[59]  M. Roberfroid,et al.  Dietary modulation of the human colonic microbiota: updating the concept of prebiotics , 2004, Nutrition Research Reviews.

[60]  J. Karkalas,et al.  Starch-composition, fine structure and architecture , 2004 .

[61]  A. Bernalier-Donadille,et al.  The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. , 2003, FEMS microbiology ecology.

[62]  H. Flint,et al.  Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. , 2002, International journal of systematic and evolutionary microbiology.

[63]  J. Proll,et al.  The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. , 2002, The Journal of nutrition.

[64]  H. Harmsen,et al.  The Effect of the Prebiotic Inulin and the Probiotic Bifidobacterium longum on the Fecal Microflora of Healthy Volunteers Measured by FISH and DGGE , 2002 .

[65]  S. Kauppinen,et al.  Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. , 2000, Structure.

[66]  H. Flint,et al.  Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut , 2000, Applied and Environmental Microbiology.

[67]  M. Blaut,et al.  Effects of inulin on faecal bifidobacteria in human subjects , 1999, British Journal of Nutrition.

[68]  E. Sakaguchi,et al.  Caecal fermentation and energy accumulation in the rat fed on indigestible oligosaccharides , 1998, British Journal of Nutrition.

[69]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[70]  A. Handa,et al.  Chemistry and uses of pectin--a review. , 1997, Critical reviews in food science and nutrition.

[71]  P. Azadi,et al.  The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase. , 1995, Glycobiology.

[72]  G R Gibson,et al.  Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. , 1995, Gastroenterology.

[73]  R. Borriss,et al.  Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. , 1995, Microbiology.

[74]  T. Mitsuoka,et al.  Effect of Dietary Alginate on the Faecal Microbiota and Faecal Metabolic Activity in Humans , 1994 .

[75]  T. Higashi,et al.  Effect of dietary chitosan on faecal microbiota and faecal metabolites of humans , 1994 .

[76]  B. Hamaker,et al.  Effect of Dietary Fiber and Starch on Fecal Composition in Preschool Children Consuming Maize, Amaranth, or Cassava Flours , 1991, Journal of pediatric gastroenterology and nutrition.

[77]  K. Wedekind,et al.  Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces , 1988, Applied and environmental microbiology.

[78]  L. Montgomery Isolation of human colonic fibrolytic bacteria , 1988 .

[79]  H. Englyst,et al.  Starch utilization by the human large intestinal microflora. , 1986, The Journal of applied bacteriology.

[80]  J. Slavin,et al.  Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects. , 1981, The Journal of nutrition.

[81]  M. P. Bryant,et al.  Isolation of a Cellulolytic Bacteroides sp. from Human Feces , 1977, Applied and environmental microbiology.

[82]  E. Hipsley Dietary “Fibre” and Pregnancy Toxaemia*† , 1953, British medical journal.

[83]  D. Wong Enzymatic Deconstruction of Backbone Structures of the Ramified Regions in Pectins , 2008, The protein journal.

[84]  G. Phillips,et al.  2 Starch: Structure, Analysis, and Application , 2006 .

[85]  M. Gidley,et al.  Galactomannans and other cell wall storage polysaccharides in seeds , 2006 .

[86]  P. Lawson,et al.  Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. , 2002, Systematic and applied microbiology.

[87]  M. JonesJulie,et al.  The definition of dietary fibers , 2001 .

[88]  N. Schiller,et al.  ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. , 2000, Annual review of microbiology.

[89]  M. Roberfroid,et al.  The bifidogenic nature of chicory inulin and its hydrolysis products. , 1998, The Journal of nutrition.

[90]  C. Biliaderis,et al.  Cereal arabinoxylans: advances in structure and physicochemical properties , 1995 .

[91]  S. Leschine,et al.  Cellulose degradation in anaerobic environments. , 1995, Annual review of microbiology.

[92]  J. Thibault,et al.  Cell wall polysaccharide interactions in maize bran , 1995 .

[93]  C. Biliaderis,et al.  Studies on the structure of wheat-endosperm arabinoxylans , 1994 .