Influence of microstructure and architecture on oxygen permeation of La(1−X)SrXFe(1−Y)(Ga, Ni)YO3−δ perovskite catalytic membrane reactor

[1]  P. Geffroy,et al.  Thermal behaviour of La0.8Sr0.2Fe1−xGaxO3−δ (x = 0 or x = 0.3) , 2009 .

[2]  P. Geffroy,et al.  Elaboration of La0.8Sr0.2Fe0.7Ga0.3O3−δ/La0.8M0.2FeO3−δ (M = Ca, Sr and Ba) asymmetric membranes by tape-casting and co-firing , 2009 .

[3]  A. Feldhoff,et al.  Influence of grain size on the oxygen permeation performance of perovskite-type (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3−δ membranes , 2008 .

[4]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[5]  P. Geffroy,et al.  Oxygen permeation, thermal and chemical expansion of (La, Sr)(Fe, Ga)O3−δ perovskite membranes , 2008 .

[6]  K. Efimov,et al.  Grain boundaries as barrier for oxygen transport in perovskite-type membranes , 2008 .

[7]  W. Haije,et al.  Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ , 2006 .

[8]  T. Chartier,et al.  Microstructure and oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3−δ membrane containing magnesia as dispersed second phase particles , 2006 .

[9]  J. Caro,et al.  In situ high temperature X-ray diffraction studies of mixed ionic and electronic conducting perovskite-type membranes , 2005 .

[10]  D. Resasco,et al.  Study of Ni catalysts on different supports to obtain synthesis gas , 2005 .

[11]  J. Caro,et al.  Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes , 2005 .

[12]  V. Kharton,et al.  Thermal and chemical induced expansion of La0.3Sr0.7(Fe,Ga)O3−δ ceramics , 2003 .

[13]  J. W. Kim,et al.  Enhancement of oxygen permeation by La0.6Sr0.4CoO3-δ coating in La0.7Sr0.3Ga0.6Fe0.4O3-δ membrane , 2002 .

[14]  V. Kharton,et al.  Mixed ionic–electronic conductors: effects of ceramic microstructure on transport properties , 2002 .

[15]  Jens R. Rostrup-Nielsen,et al.  Syngas in perspective , 2002 .

[16]  D. J. Wilhelm,et al.  Syngas production for gas-to-liquids applications: technologies, issues and outlook , 2001 .

[17]  A. Kovalevsky,et al.  Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni): IV. Effect of preparation method on oxygen transport in LaCoO3−δ , 2000 .

[18]  Michael Schwartz,et al.  Catalytic membrane reactors for spontaneous synthesis gas production , 2000 .

[19]  A. Kovalevsky,et al.  Ceramic Microstructure and Oxygen Permeability of SrCo ( Fe , M ) O 3 − δ ( M = Cu or Cr ) Perovskite Membranes , 1998 .

[20]  Henricus J.M. Bouwmeester,et al.  Dense Ceramic Membranes for Oxygen Separation , 1997, The CRC Handbook of SOLID STATE Electrochemistry.

[21]  H. Bouwmeester,et al.  Oxygen permeation of La0.3Sr0.7CoO3−δ , 1997 .

[22]  Shuben Li,et al.  Partial oxidation of methane to carbon monoxide and hydrogen over NiO/La2O3/γ-Al2O3 catalyst , 1996 .

[23]  Y. S. Lin,et al.  Oxygen permeation through thin mixed-conducting solid oxide membranes , 1994 .

[24]  H. Bouwmeester,et al.  Ion and mixed conducting oxides as catalysts , 1992 .

[25]  Noboru Yamazoe,et al.  OXYGEN PERMEATION THROUGH PEROVSKITE-TYPE OXIDES , 1985 .

[26]  I. Davidson,et al.  Electrical and thermal properties of La0.7Sr0.3Ga0.6Fe0.4O3 ceramics , 2006 .

[27]  T. Chartier,et al.  An architectural approach to the oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3-δ perovskite membrane , 2006 .

[28]  P. Buffat,et al.  Correlation between oxygen transport properties and microstructure in La0.5Sr0.5FeO3−δ , 2005 .

[29]  H. Bouwmeester,et al.  Chapter 10 Dense ceramic membranes for oxygen separation , 1996 .