Towards Learning Arabic Morphophonology

One core challenge facing morphological inflection systems is capturing language-specific morphophonological changes. This is particularly true of languages like Arabic which are morphologically complex. In this paper, we learn explicit morphophonological rules from morphologically annotated Egyptian Arabic and corresponding surface forms. These rules are human-interpretable, capture known morphophonological phenomena in the language, and are generalizable to unseen forms.

[1]  Fausto Giunchiglia,et al.  The SIGMORPHON 2022 Shared Task on Morpheme Segmentation , 2022, SIGMORPHON.

[2]  Nizar Habash,et al.  Morphosyntactic Tagging with Pre-trained Language Models for Arabic and its Dialects , 2021, FINDINGS.

[3]  Charles Yang,et al.  The Greedy and Recursive Search for Morphological Productivity , 2021, ArXiv.

[4]  Ryan Cotterell,et al.  Applying the Transformer to Character-level Transduction , 2020, EACL.

[5]  Alexander Erdmann,et al.  CAMeL Tools: An Open Source Python Toolkit for Arabic Natural Language Processing , 2020, LREC.

[6]  Nizar Habash,et al.  Morphological Analysis and Disambiguation for Gulf Arabic: The Interplay between Resources and Methods , 2020, LREC.

[7]  Alexander Erdmann,et al.  A Little Linguistics Goes a Long Way: Unsupervised Segmentation with Limited Language Specific Guidance , 2019, Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology.

[8]  Ryan Cotterell,et al.  Recurrent Neural Networks in Linguistic Theory: Revisiting Pinker and Prince (1988) and the Past Tense Debate , 2018, TACL.

[9]  Nizar Habash,et al.  An Arabic Dependency Treebank in the Travel Domain , 2018, ArXiv.

[10]  E. Broselow Syllable structure in the dialects of Arabic , 2017 .

[11]  Nizar Habash,et al.  A Morphological Analyzer for Gulf Arabic Verbs , 2017, WANLP@EACL.

[12]  Nawar Halabi,et al.  Modern standard Arabic phonetics for speech synthesis , 2016 .

[13]  Rico Sennrich,et al.  Linguistic Input Features Improve Neural Machine Translation , 2016, WMT.

[14]  Regina Barzilay,et al.  An Unsupervised Method for Uncovering Morphological Chains , 2015, TACL.

[15]  Ernest T. Abdel-Massih,et al.  A reference grammar of Egyptian Arabic , 2009 .

[16]  Nizar Habash,et al.  MAGEAD: A Morphological Analyzer and Generator for the Arabic Dialects , 2006, ACL.

[17]  Kenneth R. Beesley,et al.  Arabic Morphology Using Only Finite-State Operations , 1998, SEMITIC@COLING.

[18]  Reham M. Marzouk,et al.  Morphotactic Modeling in an Open-source Multi-dialectal Arabic Morphological Analyzer and Generator , 2022, SIGMORPHON.

[19]  A. A. Krizhanovsky,et al.  SIGMORPHON–UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection , 2022, SIGMORPHON.

[20]  Salam Khalifa,et al.  SIGMORPHON–UniMorph 2022 Shared Task 0: Modeling Inflection in Language Acquisition , 2022, SIGMORPHON.

[21]  Adina Williams,et al.  Generalising to German Plural Noun Classes, from the Perspective of a Recurrent Neural Network , 2021, CONLL.

[22]  Houda Bouamor,et al.  Gender-Aware Reinflection using Linguistically Enhanced Neural Models , 2020, GEBNLP.

[23]  Nizar Habash,et al.  50th Annual Meeting of the Association for Computational Linguistics Proceedings of the Conference Volume 2: Short Papers , 2012 .

[24]  Noam Chomsky,et al.  The Sound Pattern of English , 1968 .