Close-spaced sublimation of SnS absorber layers and SnS/CdS heterojunction solar cells with Mo and Ti back metal contacts

[1]  T. Shin,et al.  Efficient Nanostructured TiO2/SnS Heterojunction Solar Cells , 2019, Advanced Energy Materials.

[2]  Andrew L. Johnson,et al.  Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells , 2019, RSC advances.

[3]  Jaeyeong Heo,et al.  Vapor transport deposited tin monosulfide for thin-film solar cells: effect of deposition temperature and duration , 2019, Journal of Materials Chemistry A.

[4]  Vinaya Kumar Arepalli,et al.  Effect of substrate temperature on the structural and optical properties of radio frequency sputtered tin sulfide thin films for solar cell application , 2018, Thin Solid Films.

[5]  E. Wallin,et al.  Deep surface Cu depletion induced by K in high‐efficiency Cu(In,Ga)Se2 solar cell absorbers , 2018 .

[6]  Chia-Hua Huang,et al.  Deposition Technologies of High-Efficiency CIGS Solar Cells: Development of Two-Step and Co-Evaporation Processes , 2018, Crystals.

[7]  A. Opanasyuk,et al.  Formation of SnS phase obtained by thermal vacuum annealing of SnS 2 thin films and its application in solar cells , 2018, Materials Science in Semiconductor Processing.

[8]  B. Marí,et al.  Efficiency enhancement of SnS solar cell using back surface field , 2018, 2018 1st International Conference on Power, Energy and Smart Grid (ICPESG).

[9]  K. Reddy,et al.  Investigations on the parameters limiting the performance of CdS/SnS solar cell , 2018 .

[10]  C. Jeon,et al.  Kinetically Controlled Growth of Phase‐Pure SnS Absorbers for Thin Film Solar Cells: Achieving Efficiency Near 3% with Long‐Term Stability Using an SnS/CdS Heterojunction , 2018 .

[11]  M. Green,et al.  Efficiency Enhancement of Kesterite Cu2ZnSnS4 Solar Cells via Solution-Processed Ultrathin Tin Oxide Intermediate Layer at Absorber/Buffer Interface , 2017 .

[12]  T. J. Whittles,et al.  Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications. , 2017, ACS applied materials & interfaces.

[13]  David C. Joy,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 2017 .

[14]  D. Flandre,et al.  Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu(In,Ga)Se2 solar cell performances using SCAPS 1-D model , 2017 .

[15]  S. Rudenko,et al.  Plasmonic Effects in Tin Disulfide Nanostructured Thin Films Obtained by the Close-Spaced Vacuum Sublimation , 2017, Plasmonics.

[16]  Tonio Buonassisi,et al.  Improving the Carrier Lifetime of Tin Sulfide via Prediction and Mitigation of Harmful Point Defects. , 2017, The journal of physical chemistry letters.

[17]  R. Menozzi,et al.  Impact of front-side point contact/passivation geometry on thin-film solar cell performance , 2017 .

[18]  R. Z. Moghadam,et al.  Modification of the morphology and optical properties of SnS films using glancing angle deposition technique , 2017 .

[19]  A. Walsh,et al.  DFT investigation into the underperformance of sulfide materials in photovoltaic applications , 2017 .

[20]  Marika Edoff,et al.  Atomic Layer Deposition of Cubic and Orthorhombic Phase Tin Monosulfide , 2017 .

[21]  C. Jeon,et al.  Studies on chemical bath deposited SnS2 films for Cd-free thin film solar cells , 2017 .

[22]  M. Mollar,et al.  SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications , 2017, Journal of Electronic Materials.

[23]  A. Opanasyuk,et al.  Laser-induced SnS2-SnS phase transition and surface modification in SnS2 thin films , 2016 .

[24]  J. Major Grain boundaries in CdTe thin film solar cells: a review , 2016 .

[25]  M. Horn,et al.  A review of tin (II) monosulfide and its potential as a photovoltaic absorber , 2016 .

[26]  Weiqi Wang,et al.  Atomic Layer Deposited Aluminum Oxide for Interface Passivation of Cu2ZnSn(S,Se)4 Thin‐Film Solar Cells , 2016 .

[27]  Анатолій Сергійович Опанасюк,et al.  Structural and electrical properties of SnS2 thin films , 2016 .

[28]  K. Nelson,et al.  Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early-stage photovoltaic material , 2015, 1511.07887.

[29]  Jeremy R. Poindexter,et al.  Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide , 2015 .

[30]  Yanfa Yan,et al.  Study of close space sublimation (CSS) Grown SnS thin-films for solar cell applications , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[31]  T. Buonassisi,et al.  Photovoltaics: Non-cubic solar cell materials , 2015 .

[32]  O. Vigil-Galan,et al.  SnS-based thin film solar cells: perspectives over the last 25 years , 2015, Journal of Materials Science: Materials in Electronics.

[33]  J. Olsson,et al.  Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models , 2014 .

[34]  Tonio Buonassisi,et al.  3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation , 2014, Advanced materials.

[35]  Sang Woon Lee,et al.  Overcoming Efficiency Limitations of SnS‐Based Solar Cells , 2014 .

[36]  B. Marí,et al.  Numerical analysis of SnS based polycrystalline solar cells , 2014 .

[37]  A. G. Kunjomana,et al.  Photovoltaic structures using thermally evaporated SnS and CdS thin films , 2013 .

[38]  P. Dale,et al.  Direct Synthesis of Single-Phase p-Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells , 2013 .

[39]  P. Arun,et al.  Influence of grain size on the band-gap of annealed SnS thin films , 2012, 1207.2830.

[40]  V. Gremenok,et al.  Tin sulfide thin films and Mo/p-SnS/n-CdS/ZnO heterojunctions for photovoltaic applications , 2012 .

[41]  Roy G. Gordon,et al.  Atomic Layer Deposition of Tin Monosulfide Thin Films , 2011 .

[42]  M. Lux‐Steiner,et al.  ZnS Nanodot Film as Defect Passivation Layer for Cu(In,Ga)(S,Se)2 Thin‐Film Solar Cells Deposited by Spray‐ILGAR (Ion‐Layer Gas Reaction) , 2011 .

[43]  P. M. Bukivskij,et al.  Study of the structural and photoluminescence properties of CdTe polycrystalline films deposited by close-spaced vacuum sublimation , 2010 .

[44]  D. Kandiyoti 1 introduction. , 2005, Journal of the ICRU.

[45]  A. Balandin,et al.  Origin of the optical phonon frequency shifts in ZnO quantum dots , 2005 .

[46]  J. Swart,et al.  Micro-Raman stress characterization of polycrystalline silicon films grown at high temperature , 2004 .

[47]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[48]  H. Noguchi,et al.  Characterization of vacuum-evaporated tin sulfide film for solar cell materials , 1994 .

[49]  H. R. Chandrasekhar,et al.  Infrared and Raman spectra of the IV-VI compounds SnS and SnSe , 1977 .

[50]  K. Nassau,et al.  The growth of large SbSI crystals: Control of needle morphology , 1970 .

[51]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[52]  E. Fortunato,et al.  Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer , 2018 .

[53]  A. Ray,et al.  Junction and Back Contact Properties of Spray-Deposited M/SnS/In2S3/SnO2:F/Glass (M = Cu, Graphite) Devices: Considerations to Improve Photovoltaic Performance , 2014, Journal of Electronic Materials.