An Accelerating Quasi-Monte Carlo Method for Option Pricing Under the Generalized Hyperbolic Lévy Process

In this paper, we develop a simple and yet practically efficient simulation algorithm for derivative pricing. Our method is based on an extension of the Imai and Tan’s linear transformation method which is originally proposed in the context of simulating a Gaussian process. By generalizing this method to other stochastic processes and exploiting the numerical inversion method of Hormann and Leydold, this method can be used to enhance quasi-Monte Carlo method in a wide range of applications. We demonstrate the relative efficiency of our proposed simulation technique using option examples for which the underlying asset price follows an exponential generalized hyperbolic Lévy process. We also illustrate the impact of our proposed method on dimension reduction.

[1]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[2]  E. Eberlein,et al.  The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .

[3]  Ken Seng Tan,et al.  Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .

[4]  S. Tezuka,et al.  Toward real-time pricing of complex financial derivatives , 1996 .

[5]  José Fajardo,et al.  Generalized Hyperbolic Distributions and Brazilian Data , 2002 .

[6]  R. Lord,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .

[7]  K. Prause The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .

[8]  Nick Webber,et al.  A Monte Carlo Method for the Normal Inverse Gaussian Option Valuation Model using an Inverse Gaussian Bridge , 2003 .

[9]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[10]  I. Sloan,et al.  Low discrepancy sequences in high dimensions: How well are their projections distributed? , 2008 .

[11]  Miriam Hodge Valuing path-dependent options in the variance-gamma model by Monte Carlo with a gamma bridge , 2004 .

[12]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[13]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[14]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[15]  Julian V. Noble,et al.  The full Monte , 2002, Comput. Sci. Eng..

[16]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Michael Sørensen,et al.  Stock returns and hyperbolic distributions , 1999 .

[18]  Wolfgang Hörmann,et al.  Continuous random variate generation by fast numerical inversion , 2003, TOMC.

[19]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[20]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[21]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[22]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[23]  P. Kettler,et al.  A QUASI-MONTE CARLO ALGORITHM FOR THE NORMAL INVERSE GAUSSIAN DISTRIBUTION AND VALUATION OF FINANCIAL DERIVATIVES , 2006 .

[24]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[25]  Hansjörg Albrecher,et al.  On Asian option pricing for NIG Lévy processes , 2004 .

[26]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[27]  M. Sørensen,et al.  Hyperbolic Processes in Finance , 2003 .

[28]  S. Rachev,et al.  Models for option prices , 1995 .

[29]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[30]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[31]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[32]  Tina Hviid Rydberg Generalized Hyperbolic Diffusion Processes with Applications in Finance , 1999 .

[33]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[34]  Keith P. Ambachtsheer,et al.  The Canada Supplementary Pension Plan (CSPP) , 2008 .

[35]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[36]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[37]  K. S. Tan,et al.  Quasi-Monte Carlo Methods in Numerical Finance , 1996 .

[38]  A. C. Atkinson,et al.  The Simulation of Generalized Inverse Gaussian and Hyperbolic Random Variables , 1982 .

[39]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[40]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[41]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[42]  Ken Seng Tan,et al.  A general dimension reduction technique for derivative pricing , 2006 .

[43]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[44]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[45]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[46]  Pierre L'Ecuyer,et al.  Efficient Monte Carlo and Quasi - Monte Carlo Option Pricing Under the Variance Gamma Model , 2006, Manag. Sci..

[47]  E. Eberlein Application of Generalized Hyperbolic Lévy Motions to Finance , 2001 .

[48]  N. M. Temme,et al.  On the numerical evaluation of the modified bessel function of the third kind , 1975 .

[49]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[50]  J. D. Beasley,et al.  Algorithm AS 111: The Percentage Points of the Normal Distribution , 1977 .

[51]  Friedrich Pillichshammer,et al.  A Method for Approximate Inversion of the Hyperbolic CDF , 2002, Computing.

[52]  Option pricing proposals under the generalized hyperbolic model , 1997 .

[53]  Jürgen Hartinger,et al.  Simulation Methods for Valuing Asian Option Prices in a Hyperbolic Asset Price Model , 2003 .

[54]  Martin Predota,et al.  On European and Asian option pricing in the generalized hyperbolic model , 2005, European Journal of Applied Mathematics.

[55]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[56]  Peter H. Ritchken,et al.  Pricing Options under Generalized GARCH and Stochastic Volatility Processes , 1999 .

[57]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .