Understanding the Direct Spinning of CNT Fibers in Terms of the Thermodynamic and Kinetic Landscape: A Personal View

[1]  A. Boies,et al.  The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration , 2017, Scientific Reports.

[2]  A. Boies,et al.  The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel , 2017 .

[3]  A. Boies,et al.  Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis , 2016 .

[4]  A. Windle,et al.  Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of sulphur. , 2014, Faraday discussions.

[5]  K. Koziol,et al.  Ultra-pure single wall carbon nanotube fibres continuously spun without promoter , 2014, Scientific Reports.

[6]  H. Fukuyama,et al.  Temperature dependence of surface tension of molten iron under reducing gas atmosphere , 2011 .

[7]  K. Koziol,et al.  Continuous Direct Spinning of Fibers of Single‐Walled Carbon Nanotubes with Metallic Chirality , 2011, Advanced materials.

[8]  J. Davidson,et al.  Carbon nanotube reactor: Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up , 2010 .

[9]  I. Kinloch,et al.  The role of sulphur in the synthesis of carbon nanotubes by chemical vapour deposition at high temperatures. , 2008, Journal of nanoscience and nanotechnology.

[10]  E. Sutter,et al.  Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. , 2007, Nature materials.

[11]  Y. Shibuta,et al.  A molecular dynamics study of the carbon-catalyst interaction energy for multi-scale modelling of single wall carbon nanotube growth , 2006 .

[12]  T. Ishikawa,et al.  Effects of sulfur on interfacial energy between Fe-C melt and graphite , 2005 .

[13]  A. Garg,et al.  Hot Hydrogen Exposure Degradation of the Strength of Mullite , 2005 .

[14]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[15]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[16]  T. Choudhary,et al.  Nonoxidative Activation of Methane , 2003 .

[17]  I. Kinloch,et al.  Production of aligned carbon nanotubes by the CVD injection method , 2002 .

[18]  A. Schneider,et al.  Role of sulphur in carburization, carbide formation and metal dusting of iron , 2002 .

[19]  A. Liñán,et al.  Confined axisymmetric laminar jets with large expansion ratios , 2002 .

[20]  F. Billaud,et al.  Methane pyrolysis: thermodynamics , 1997 .

[21]  Ø. Grong,et al.  A model for the graphite formation in ductile , 1993, Metallurgical and Materials Transactions A.

[22]  C. B. Alcock,et al.  Vapour Pressure Equations for the Metallic Elements: 298–2500K , 1984 .

[23]  S. Stein On the High Temperature Chemical Equilibria of Polycyclic Aromatic Hydrocarbons , 1978 .

[24]  G. Belton Langmuir adsorption, the Gibbs adsorption isotherm, and interfacial kinetics in liquid metal systems , 1976 .

[25]  P. A. Tesner Formation of soot particles , 1973 .

[26]  Y. Naidich,et al.  Wetting of graphite by nickel as affected by the liquid-phase dissolution process of carbon , 1971 .

[27]  P. Griffiths,et al.  High-temperature equilibria from plasma sources. I - Carbon-hydrogen-oxygen systems. , 1969 .

[28]  A. D. Kirshenbaum,et al.  The densities of liquid iron and nickel and an estimate of their critical temperature , 1963 .

[29]  W. Kingery,et al.  Surface Tension at Elevated Temperatures. II. Effect of C, N, O and S on Liquid Iron Surface Tension and Interfacial Energy with Al2O3 , 1955 .