Polynomial approximation by means of the random discrete L2 projection and application to inverse problems for PDEs with stochastic data

The main topic of this thesis concerns the polynomial approximation of aleatory functions by means of the random discrete L2 projection, and its application to inverse problems for Partial Differential Equations (PDEs) with stochastic data. The motivations come from the parametric approximation of the solution to partial differential models. The thesis is arranged in two parts, with an introductory chapter which contains an overview of modern techniques for polynomial approximation of functions depending on random variables. In the former part, from Chapter 1 to Chapter 4, the focus is on the theoretical analysis of the random discrete L2 projection applied to solve the so-called forward problem, e.g. to approximate the moments of an aleatory function given its observations, or to compute the solution to a computational model with stochastic coefficients given initial and boundary data. The stability and optimality of the approximation error evaluated in the L2 weighted norm are addressed. In the latter part of the thesis, composed of Chapter 5 and Chapter 6, the methodology previously developed for the forward problem is applied to inverse problems for PDEs with stochastic coefficients. The factorization method is applied in the framework of Electrical Impedance Tomography, first in the case of inhomogeneous background, and then in the case of piecewise constant background, with values in each region affected by uncertainty. Finally, in Chapter 6 the variants of the Factorization Method proposed in the previous chapter are accelerated exploiting the techniques that have been presented in the first part of the thesis.

[1]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[2]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[3]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[4]  R. Kress Conformal mapping and impedance tomography , 2010 .

[5]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[6]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[7]  E. Somersalo,et al.  State estimation with fluid dynamical evolution models in process tomography - an application to impedance tomography , 2001 .

[8]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[9]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[10]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[11]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[12]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[13]  R. DeVore,et al.  Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions , 2007 .

[14]  Christian Soize,et al.  Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields , 2009 .

[15]  R. Tempone,et al.  Adaptive Multilevel Monte Carlo Simulation , 2012, CSE 2012.

[16]  W. Rudin Principles of mathematical analysis , 1964 .

[17]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[18]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[19]  Mary F. Wheeler,et al.  Stochastic collocation and mixed finite elements for flow in porous media , 2008 .

[20]  Fabio Nobile,et al.  Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..

[21]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[22]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[24]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[25]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[26]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[27]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[28]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[29]  David Colton,et al.  Qualitative Methods in Inverse Scattering Theory , 1997 .

[30]  Jon C. Helton,et al.  Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems , 2002 .

[31]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[32]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[33]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[34]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[35]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[36]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[37]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[38]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[39]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[40]  Liliana Borcea,et al.  Electrical impedance tomography with resistor networks , 2008 .

[41]  Roger Ghanem,et al.  Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition , 2007 .

[42]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[43]  M. Piana,et al.  Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering , 2009 .

[44]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[45]  Zhenyu Guo,et al.  A review of electrical impedance techniques for breast cancer detection. , 2003, Medical engineering & physics.

[46]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[47]  Harri Hakula,et al.  Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography , 2007 .

[48]  Martin Hanke,et al.  The Factorization Method for Electrical Impedance Tomography Data from a New Planar Device , 2007, Int. J. Biomed. Imaging.

[49]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[50]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[51]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[52]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[53]  Ronald L. Iman Latin Hypercube Sampling , 2008 .

[54]  Raul Tempone,et al.  Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients , 2009 .

[55]  G. Burton Sobolev Spaces , 2013 .

[56]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[57]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[58]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[59]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[60]  Christian Soize,et al.  Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .

[61]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[62]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[63]  Dirk Roose,et al.  Coping with complexity : model reduction and data analysis , 2011 .

[64]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[65]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[66]  E. Paleologos,et al.  Stochastic Methods for Flow in Porous Media, Coping With Uncertainties , 2003 .

[67]  H. Haddar,et al.  Numerical analysis of the Factorization Method for Electrical Impedance Tomography in inhomogeneous medium , 2011 .

[68]  Olivier Catoni,et al.  Statistical learning theory and stochastic optimization , 2004 .

[69]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[70]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[71]  M. Kohler Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression , 2000 .

[72]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[73]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[74]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[75]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[76]  H. Elman,et al.  DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .

[77]  Bruno Sudret,et al.  Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .

[78]  R. Tempone,et al.  ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .

[79]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[80]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[81]  M. Eldred,et al.  Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos. , 2008 .

[82]  Albert Cohen,et al.  Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .

[83]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[84]  Michael Vogelius,et al.  A direct impedance tomography algorithm for locating small inhomogeneities , 2003, Numerische Mathematik.

[85]  Thomas Kalbacher,et al.  Comments on "A mass-conservative switching algorithm for modeling fluid flow in variably saturated porous media, K. Sadegh Zadeh, Journal of Computational Physics, 230 (2011)" , 2015, J. Comput. Phys..

[86]  Jin Keun Seo,et al.  Detecting Inclusions in Electrical Impedance Tomography Without Reference Measurements , 2009, SIAM J. Appl. Math..

[87]  Houssem Haddar,et al.  Numerical analysis of the factorization method for EIT with a piecewise constant uncertain background , 2013 .

[88]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[89]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[90]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[91]  Wolfgang Dahmen,et al.  Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..

[92]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[93]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[94]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[95]  Han-Fu Chen Stochastic approximation and its applications , 2002 .

[96]  Albert Cohen,et al.  Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs , 2011 .

[97]  Harri Hakula,et al.  The Factorization Method Applied to the Complete Electrode Model of Impedance Tomography , 2008, SIAM J. Appl. Math..

[98]  Nuutti Hyvönen,et al.  Factorization method and irregular inclusions in electrical impedance tomography , 2007 .

[99]  Birgit Schappel,et al.  The Factorization Method for Electrical Impedance Tomography in the Half-Space , 2008, SIAM J. Appl. Math..

[100]  George E. Karniadakis,et al.  Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..

[101]  M. Anitescu,et al.  ORTHOGONAL BASES FOR POLYNOMIAL REGRESSION WITH DERIVATIVE INFORMATION IN UNCERTAINTY QUANTIFICATION , 2010 .

[102]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[103]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[104]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[105]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[106]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[107]  M. Kohler Nonlinear orthogonal series estimates for random design regression , 2003 .

[108]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[109]  Michael Vogelius,et al.  Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .

[110]  Christian Soize,et al.  Polynomial chaos representation of a stochastic preconditioner , 2005 .

[111]  J. Hesthaven,et al.  Adaptive sparse grid algorithms with applications to electromagnetic scattering under uncertainty , 2011 .

[112]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[113]  R. Walters,et al.  Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics , 2010 .

[114]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[115]  Adil M. Bagirov,et al.  Estimation of a Regression Function by Maxima of Minima of Linear Functions , 2009, IEEE Transactions on Information Theory.

[116]  Fabio Nobile,et al.  Computers and Mathematics with Applications Convergence of Quasi-optimal Stochastic Galerkin Methods for a Class of Pdes with Random Coefficients , 2022 .

[117]  Rodolfo H. Torres,et al.  Uniqueness in the Inverse Conductivity Problem for Conductivities with 3/2 Derivatives in Lp, p > 2n , 2003 .

[118]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[119]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[120]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[121]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[122]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[123]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[124]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[125]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.