Planar shape representation and matching under projective transformation

This paper introduces a new representation for planar objects which is invariant to projective transformation. Proposed representation relies on a new shape basis which we refer to as the conic basis. The conic basis takes conic-section coefficients as its dimensions and represents the object as a convex combination of conic-sections. Pairs of conic-sections in this new basis and their projective invariants provides the proposed view invariant representation. We hypothesize that two projectively transformed versions of an object result in the same representation. We show that our hypothesis provides promising recognition performance when we use the nearest neighbor rule to match projectively deformed objects.

[1]  Gian Luca Foresti,et al.  Object recognition and tracking for remote video surveillance , 1999, IEEE Trans. Circuits Syst. Video Technol..

[2]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[3]  David B. Cooper,et al.  Covariant-Conics Decomposition of Quartics for 2D Shape Recognition and Alignment , 2004, Journal of Mathematical Imaging and Vision.

[4]  Mohamed S. Kamel,et al.  Affine invariant multiscale wavelet-based shape matching algorithm , 2004, First Canadian Conference on Computer and Robot Vision, 2004. Proceedings..

[5]  William G. Wee,et al.  Object Recognition and Recovery by Skeleton Graph Matching , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[6]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[9]  Nicu Sebe,et al.  Object Recognition for Video Retrieval , 2002, CIVR.

[10]  Björn Stenger,et al.  Shape context and chamfer matching in cluttered scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[11]  Luc Van Gool,et al.  Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.

[12]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[13]  Chun-Hsiung Fang,et al.  Two-dimensional shape recognition with Cosine Transform-Based Synthesized Affine Invariant Function , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[14]  Jitendra Malik,et al.  Efficient shape matching using shape contexts , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Long Quan,et al.  Joint Invariants of a Triplet of Coplanar Conics: Stability and Discriminating Power for Object Recognition , 1998, Comput. Vis. Image Underst..

[17]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[18]  David A. Forsyth,et al.  Planar object recognition using projective shape representation , 1995, International Journal of Computer Vision.

[19]  Dong Xu,et al.  Geometric moment invariants , 2008, Pattern Recognit..

[20]  Alper Yilmaza,et al.  A VIEW-GEOMETRIC APPROACH TO VIEW AND OCCLUSION INVARIANT SHAPE RECOGNITION AND RETRIEVAL , 2008 .

[21]  Edwin R. Hancock,et al.  Histogram-based object recognition using shape-from-shading , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[22]  Prabir Bhattacharya,et al.  Invariants of Families of Coplanar Conics and Their Applications to Object Recognition , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[23]  David G. Stork,et al.  Pattern Classification , 1973 .

[24]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Aytül Erçil,et al.  The Classical Theory of Invariants and Object Recognition Using Algebraic Curve and Surfaces , 2004, Journal of Mathematical Imaging and Vision.

[26]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[27]  Benoit Huet,et al.  Appearance-based object recognition using shape-from-shading , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[28]  Isaac Weiss,et al.  Geometric invariants and object recognition , 1993, International Journal of Computer 11263on.

[29]  In-So Kweon,et al.  2-D object recognition using invariant contour descriptor and projective refinement , 1998, Pattern Recognit..

[30]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[31]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[32]  C. Hann,et al.  Projective Curvature and Integral Invariants , 2002 .

[33]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[34]  Patrick Gros,et al.  Geometric interpretation of joint conic invariants , 1992 .

[35]  Zhuowen Tu,et al.  Shape Matching and Recognition - Using Generative Models and Informative Features , 2004, ECCV.

[36]  Cecilia Di Ruberto,et al.  Recognition of shapes by attributed skeletal graphs , 2004, Pattern Recognit..

[37]  L. Licev,et al.  Analysis and diagnostics of the brain-stem ultrasound images , 2007, 2007 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services.

[38]  Alfred M. Bruckstein,et al.  On differential invariants of planar curves and recognizing partially occluded planar shapes , 1995, Annals of Mathematics and Artificial Intelligence.

[39]  Wojciech Chojnacki,et al.  Revisiting Hartley's Normalized Eight-Point Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[41]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[42]  Chee-Way Chong,et al.  Translation and scale invariants of Legendre moments , 2004, Pattern Recognit..

[43]  Guojun Lu,et al.  Shape-based image retrieval using generic Fourier descriptor , 2002, Signal Process. Image Commun..

[44]  Hamid Krim,et al.  Classification of Curves in 2D and 3D via Affine Integral Signatures , 2008, ArXiv.

[45]  Mubarak Shah,et al.  A differential geometric approach to representing the human actions , 2008, Comput. Vis. Image Underst..

[46]  Bernt Schiele,et al.  3D object recognition from range images using local feature histograms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[47]  C. V. Jawahar,et al.  Fourier domain representation of planar curves for recognition in multiple views , 2004, Pattern Recognit..

[48]  Luc Van Gool,et al.  Semi-local projective invariants for the recognition of smooth plane curves , 1996, International Journal of Computer Vision.

[49]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[50]  Reiner Lenz,et al.  Point configuration invariants under simultaneous projective and permutation transformations , 1994, Pattern Recognit..

[51]  Kien A. Hua,et al.  Shape recognition based on the medial axis approach , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[52]  Benjamin B. Kimia,et al.  High-Order Differential Geometry of Curves for Multiview Reconstruction and Matching , 2005, EMMCVPR.