Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision. (Localisation et suivi d'activité fonctionnelle cérébrale en électro et magnétoencéphalographie: Méthodes et applications au système visuel humain)

The overall aim of this thesis is the development of novel electroencephalography (EEG) and magnetoencephalography (MEG) analysis methods to provide new insights to the functioning of the human brain. MEG and EEG are non-invasive techniques that measure outside of the head the electric potentials and the magnetic fields induced by the neuronal activity, respectively. The objective of these functional brain imaging modalities is to be able to localize in space and time the origin of the signal measured. To do so very challenging mathematical and computational problems needs to be tackled. The first part of this work proceeds from the biological origin the M/EEG signal to the resolution of the forward problem. Starting from Maxwell's equations in their quasi-static formulation and from a physical model of the head, the forward problem predicts the measurements that would be obtained for a given configuration of current generators. With realistic head models the solution is not known analytically and is obtained with numerical solvers. The first contribution of this thesis introduces a solution of this problem using a symmetric boundary element method (BEM) which has an excellent precision compared to alternative standard BEM implementations. Once a forward model is available the next challenge consists in recovering the current generators that have produced the measured signal. This problem is referred to as the inverse problem. Three types of approaches exist for solving this problem: parametric methods, scanning techniques, and image-based methods with distributed source models. This latter technique offers a rigorous formulation of the inverse problem without making strong modeling assumptions. However, it requires to solve a severely ill-posed problem. The resolution of such problems classically requires to impose constraints or priors on the solution. The second part of this thesis presents robust and tractable inverse solvers with a particular interest on efficient convex optimization methods using sparse priors. The third part of this thesis is the most applied contribution. It is a detailed exploration of the problem of retinotopic mapping with MEG measurements, from an experimental protocol design to data exploration, and resolution of the inverse problem using time frequency analysis. The next contribution of this thesis, aims at going one step further from simple source localization by providing an approach to investigate the dynamics of cortical activations. Starting from spatiotemporal source estimates the algorithm proposed provides a way to robustly track the "hot spots" over the cortical mesh in order to provide a clear view of the cortical processing over time. The last contribution of this work addresses the very challenging problem of single-trial data processing. We propose to make use of recent progress in graph-based methods in order to achieve parameter estimation on single-trial data and therefore reduce the estimation bias produced by standard multi-trial data averaging. Both the source code of our algorithms and the experimental data are freely available to reproduce the results presented. The retinotopy project was done in collaboration with the LENA team at the hopital La Pitie-Salpetriere (Paris).

[1]  J. D. Munck,et al.  A fast method to compute the potential in the multisphere model (EEG application) , 1993, IEEE Transactions on Biomedical Engineering.

[2]  Jan Warnking,et al.  Délinéation des aires visuelles rétinotopiques chez l'homme par IRM fonctionnelle , 2002 .

[3]  S R Arridge,et al.  Recent advances in diffuse optical imaging , 2005, Physics in medicine and biology.

[4]  Sylvain Vallaghé,et al.  Modélisation du problème direct de la magnéto et électroencéphalographie : méthodes numériques et calibration. (EEG and MEG forward modeling : computation and calibration) , 2008 .

[5]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[6]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[7]  George Dassios,et al.  Magnetoencephalography in ellipsoidal geometry , 2003 .

[8]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[9]  Julien Lefèvre,et al.  Optical Flow and Advection on 2-Riemannian Manifolds: A Common Framework , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[11]  M. Fornasier,et al.  Adaptive iterative thresholding algorithms for magnetoencephalography (MEG) , 2008 .

[12]  P. Celsis,et al.  Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three‐dimensional resistor mesh model , 2004, Human brain mapping.

[13]  Arjan Hillebrand,et al.  The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry , 2004, NeuroImage.

[14]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[15]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[16]  Jean-François Démonet,et al.  Electrophysiological study of the basal temporal language area: A convergence zone between language perception and production networks , 2009, Clinical Neurophysiology.

[17]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[18]  A. Ioannides,et al.  Continuous probabilistic solutions to the biomagnetic inverse problem , 1990 .

[19]  David A. Leopold,et al.  Single-trial evoked potential estimation using wavelets , 2007, Comput. Biol. Medicine.

[20]  C. Woody Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals , 1967, Medical and biological engineering.

[21]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[22]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[23]  Théodore Papadopoulo,et al.  Consensus Matching Pursuit for multi-trial EEG signals , 2009, Journal of Neuroscience Methods.

[24]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[25]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[26]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[27]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[28]  D. Spinelli,et al.  Spatiotemporal analysis of the cortical sources of the steady‐state visual evoked potential , 2007, Human brain mapping.

[29]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[30]  P. Berg,et al.  A fast method for forward computation of multiple-shell spherical head models. , 1994, Electroencephalography and clinical neurophysiology.

[31]  J. Odom VISUAL EVOKED POTENTIALS STANDARD , 2004 .

[32]  A. Gramfort,et al.  FINE CHRONOMETRIC MAPPING OF HUMAN VISUAL AREAS , 2009, NeuroImage.

[33]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[34]  S. Mallat A wavelet tour of signal processing , 1998 .

[35]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[36]  Karl J. Friston,et al.  Bayesian estimation of evoked and induced responses , 2006, Human brain mapping.

[37]  O. Faugeras,et al.  Generalized head models for MEG/EEG: boundary element method beyond nested volumes , 2006, Physics in medicine and biology.

[38]  T. Sejnowski,et al.  Analysis and visualization of single‐trial event‐related potentials , 2001, Human brain mapping.

[39]  Onno W. Weier,et al.  On the numerical accuracy of the boundary element method (EEG application) , 1989, IEEE Transactions on Biomedical Engineering.

[40]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[41]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[42]  Bhaskar D. Rao,et al.  Subset selection in noise based on diversity measure minimization , 2003, IEEE Trans. Signal Process..

[43]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[45]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[46]  H. Lüders,et al.  American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature , 1991, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[47]  D. Geselowitz On bioelectric potentials in an inhomogeneous volume conductor. , 1967, Biophysical journal.

[48]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[49]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[50]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[51]  R. Salmelin,et al.  Global optimization in the localization of neuromagnetic sources , 1998, IEEE Transactions on Biomedical Engineering.

[52]  Karl J. Friston,et al.  An empirical Bayesian solution to the source reconstruction problem in EEG , 2005, NeuroImage.

[53]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[54]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[55]  T. Gasser,et al.  Variable latencies of noisy signals: Estimation and testing in brain potential data , 1987 .

[56]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[58]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[59]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[60]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[61]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[62]  A. Gramfort,et al.  Low Dimensional Representations of MEG/EEG Data Using Laplacian Eigenmaps , 2007, 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging.

[63]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[64]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[65]  Matthieu Kowalski,et al.  A priori par normes mixtes pour les problèmes inverses. Application à la localisation de sources en M/EEG , 2009, Traitement du Signal.

[66]  I. Kaufman The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1951 .

[67]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[68]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[69]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[70]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[72]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[73]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[74]  Mingzhou Ding,et al.  Estimation of single-trial multicomponent ERPs: Differentially variable component analysis (dVCA) , 2003, Biological Cybernetics.

[75]  Mohamed Hebiri,et al.  Regularization with the Smooth-Lasso procedure , 2008, 0803.0668.

[76]  Bin He,et al.  Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex , 2007, Journal of Neuroscience Methods.

[77]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[78]  Daniel Yoshor,et al.  Receptive fields in human visual cortex mapped with surface electrodes. , 2007, Cerebral cortex.

[79]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[80]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[81]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[82]  R. Leahy,et al.  Equivalence of linear approaches in bioelectromagnetic inverse solutions , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[83]  Matthieu Kowalski,et al.  Improving M/EEG source localizationwith an inter-condition sparse prior , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[84]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[85]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[86]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[87]  D. H. Lange,et al.  Modeling and estimation of single evoked brain potential components , 1997, IEEE Transactions on Biomedical Engineering.

[88]  Théodore Papadopoulo,et al.  Implicit Meshing for Finite Element Methods using Levelsets , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[89]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[90]  A. S. Ferguson,et al.  A complete linear discretization for calculating the magnetic field using the boundary element method , 1994, IEEE Transactions on Biomedical Engineering.

[91]  Massimo Fornasier,et al.  Iteratively Re-weighted Least Squares minimization: Proof of faster than linear rate for sparse recovery , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[92]  Paul Tseng,et al.  Block coordinate relaxation methods for nonparamatric signal denoising , 1998, Defense, Security, and Sensing.

[93]  R. Keriven,et al.  Imaging Methods for MEG/EEG Inverse Problem , 2005 .

[94]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  G. Huiskamp,et al.  The need for correct realistic geometry in the inverse EEG problem , 1999, IEEE Transactions on Biomedical Engineering.

[96]  Eric L. Miller,et al.  Imaging the body with diffuse optical tomography , 2001, IEEE Signal Process. Mag..

[97]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[98]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[99]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[100]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[101]  Julien Lefèvre,et al.  Imaging Brain Activation Streams from Optical Flow Computation on 2-Riemannian Manifolds , 2007, IPMI.

[102]  Rob S. MacLeod,et al.  Inverse electrocardiography by simultaneous imposition of multiple constraints , 1999, IEEE Transactions on Biomedical Engineering.

[103]  L. Kristiansson,et al.  Performance of a model for a local neuron population , 1978, Biological Cybernetics.

[104]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[105]  Xilin Shen,et al.  Low-dimensional embedding of fMRI datasets , 2007, NeuroImage.

[106]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[107]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[108]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[109]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[110]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[111]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[112]  Karl J. Friston,et al.  Anatomically Informed Basis Functions for EEG Source Localization: Combining Functional and Anatomical Constraints , 2002, NeuroImage.

[113]  David Poeppel,et al.  Reconstructing spatio-temporal activities of neural sources from magnetoencephalographic data using a vector beamformer , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[114]  J. Meijs,et al.  The EEG and MEG, Using a Model of Eccentric Spheres to Describe the Head , 1987, IEEE Transactions on Biomedical Engineering.

[115]  L. Kaufman,et al.  Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.

[116]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[117]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[118]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[119]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[120]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[121]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[122]  Hamid Dehghani,et al.  Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography , 2007, Proceedings of the National Academy of Sciences.

[123]  Olivier Juan,et al.  Active Graph Cuts , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[124]  Roger B. H. Tootell,et al.  The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex , 2007, NeuroImage.

[125]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997 .

[126]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[127]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[128]  O. Faugeras,et al.  The Inverse EEG and MEG Problems : The Adjoint State Approach I: The Continuous Case , 1999 .

[129]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[130]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[131]  A. van Oosterom,et al.  Source parameter estimation in inhomogeneous volume conductors of arbitrary shape , 1989, IEEE Transactions on Biomedical Engineering.

[132]  Chantal Delon-Martin,et al.  Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis , 2004, NeuroImage.

[133]  Olivier David,et al.  Waves of consciousness: ongoing cortical patterns during binocular rivalry , 2004, NeuroImage.

[134]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[135]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[136]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[137]  Eduardo Martínez-Montes,et al.  EEG source imaging with spatio‐temporal tomographic nonnegative independent component analysis , 2009, Human brain mapping.

[138]  Ulrike von Luxburg,et al.  Graph Laplacians and their Convergence on Random Neighborhood Graphs , 2006, J. Mach. Learn. Res..

[139]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[140]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[141]  P. Jaskowski,et al.  Amplitudes and latencies of single-trial ERP's estimated by a maximum-likelihood method , 1999, IEEE Transactions on Biomedical Engineering.

[142]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[143]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[144]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[145]  Benoit Cottereau,et al.  Multiresolution imaging of MEG cortical sources using an explicit piecewise model , 2007, NeuroImage.

[146]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[147]  B.N. Cuffin,et al.  EEG localization accuracy improvements using realistically shaped head models , 1996, IEEE Transactions on Biomedical Engineering.

[148]  W. Singer,et al.  The response of cat visual cortex to flicker stimuli of variable frequency , 1998, The European journal of neuroscience.

[149]  Pierre Weiss,et al.  Algorithmes rapides d'optimisation convexe. Applications à la reconstruction d'images et à la détection de changements. (Fast algorithms for convex optimization. Applications to image reconstruction and change detection) , 2008 .

[150]  M. Raichle A brief history of human brain mapping , 2009, Trends in Neurosciences.

[151]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[152]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[153]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[154]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[155]  R. Leahy,et al.  On MEG forward modelling using multipolar expansions. , 2002, Physics in medicine and biology.

[156]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[157]  R.M. Leahy,et al.  Electromagnetic brain imaging using BrainStorm , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[158]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[159]  R. Ilmoniemi,et al.  Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.

[160]  J. Masdeu,et al.  Human Cerebral Activation during Steady-State Visual-Evoked Responses , 2003, The Journal of Neuroscience.

[161]  R. Leahy,et al.  Multiple Dipole Modeling and Localization from , 1992 .

[162]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[163]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[164]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[165]  D. R. Fulkerson,et al.  On the Max Flow Min Cut Theorem of Networks. , 1955 .

[166]  D. V. van Essen,et al.  Retinotopic organization of human visual cortex mapped with positron- emission tomography , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[167]  Théodore Papadopoulo,et al.  Adaptive Time-Frequency Models for Single-Trial M/EEG Analysis , 2007, IPMI.

[168]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[169]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[170]  Olivier D. Faugeras,et al.  Nonlinear dimension reduction of fMRI data: the Laplacian embedding approach , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[171]  Benoit Cottereau,et al.  Modèles hiérarchiques en imagerie MEG/EEG : application à la création rapide de cartes rétinotopiques , 2008 .

[172]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[173]  J. D. Munck A linear discretization of the volume conductor boundary integral equation using analytically integrated elements (electrophysiology application) , 1992 .

[174]  Bertrand Thirion,et al.  Fast retinotopic mapping of visual fields using MEG , 2008 .

[175]  G. McCarthy,et al.  Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. , 1977, Science.

[176]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[177]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[178]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[179]  Z. Zhang,et al.  A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. , 1995, Physics in medicine and biology.

[180]  Geoffray Adde,et al.  Méthodes de traitement d'image appliquées au problème inverse en magnéto-électro-encéphalographie , 2005 .

[181]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[182]  A. Gramfort,et al.  Challenging the estimation of cortical activity from MEG with simulated fMRI-constrained retinotopic maps , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[183]  Jean-Philippe Vert,et al.  Group lasso with overlap and graph lasso , 2009, ICML '09.

[184]  D. Geselowitz On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources , 1970 .

[185]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[186]  Stephen J. Anderson,et al.  Magnetoencephalographic Investigation of Human Cortical Area V1 Using Color Stimuli , 1997, NeuroImage.

[187]  A. Dale,et al.  From retinotopy to recognition: fMRI in human visual cortex , 1998, Trends in Cognitive Sciences.

[188]  Yuying Li,et al.  A Globally Convergent Method for lp Problems , 1991, SIAM J. Optim..

[189]  A. Tarantola Popper, Bayes and the inverse problem , 2006 .

[190]  Jari P. Kaipio,et al.  Single-trial estimation of multichannel evoked-potential measurements , 2003, IEEE Transactions on Biomedical Engineering.

[191]  Anders M. Dale,et al.  Dynamic Statistical Parametric Neurotechnique Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000 .

[192]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[193]  Ning Xu,et al.  Object segmentation using graph cuts based active contours , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[194]  S. Baillet,et al.  Localization of realistic cortical activity in MEG using current multipoles , 2004, NeuroImage.

[195]  Richard M. Leahy,et al.  A comparison of random field theory and permutation methods for the statistical analysis of MEG data , 2005, NeuroImage.

[196]  Wotao Yin,et al.  A Fixed-Point Continuation Method for L_1-Regularization with Application to Compressed Sensing , 2007 .

[197]  Xavier Tricoche,et al.  Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling , 2006, NeuroImage.

[198]  Pierre Kornprobst,et al.  Virtual Retina: A biological retina model and simulator, with contrast gain control , 2009, Journal of Computational Neuroscience.

[199]  Richard M. Leahy,et al.  Spatiotemporal Localization of Significant Activation in MEG Using Permutation Tests , 2003, IPMI.

[200]  G Gratton,et al.  Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: An optical imaging study , 2001, Human brain mapping.

[201]  H. Benali,et al.  BrainVISA: Software platform for visualization and analysis of multi-modality brain data , 2001, NeuroImage.

[202]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[203]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[204]  M. Roth,et al.  Single‐trial analysis of oddball event‐related potentials in simultaneous EEG‐fMRI , 2007, Human brain mapping.

[205]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[206]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[207]  Andreas A. Ioannides,et al.  Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI , 2003, NeuroImage.

[208]  S. Hillyard,et al.  Delayed Striate Cortical Activation during Spatial Attention , 2002, Neuron.

[209]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[210]  R. Quian Quiroga,et al.  Single-trial event-related potentials with wavelet denoising , 2003, Clinical Neurophysiology.

[211]  Clare D. McGillem,et al.  Improved Waveform Estimation Procedures for Event-Related Potentials , 1985, IEEE Transactions on Biomedical Engineering.

[212]  D. Cohen Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents , 1968, Science.

[213]  Bruno Torrésani,et al.  Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients , 2009, Signal Image Video Process..

[214]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[215]  M. Kowalski Sparse regression using mixed norms , 2009 .

[216]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[217]  Silke Dodel,et al.  Detection of signal synchronizations in resting-state fMRI datasets , 2006, NeuroImage.

[218]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[219]  G Pfurtscheller,et al.  Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[220]  Francis R. Bach,et al.  Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..

[221]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.