A framework of adaptive T-S type Rough-Fuzzy Inference Systems (ARFIS)

The rough-fuzzy hybridization scheme has become of research interest in a variety of areas over the past decade. The present paper proposes a general framework for adaptive T-S type rough-fuzzy inference systems (ARFIS) for many practical applications. Rough set theory is utilized to reduce the number of attributes and to obtain a minimal set of decision rules based on input-output data sets. A T-S type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering algorithm and the rough set approach, respectively. The generated T-S type rough-fuzzy inference system is then adjusted by the least squares fit and the conjugate gradient descent algorithm towards better performance with a validity checking for the generated minimal set of rules. The proposed framework of ARFIS is able to reduce the number of rules which increases exponentially when more input variables are involved and also to assess the validity of the minimized decision rules. The performance of the proposed framework of ARFIS is compared with other existing approaches in a variety of application areas and shown to be very competitive.

[1]  Jon Rigelsford,et al.  Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems , 2004 .

[2]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[3]  Bernhard Sendhoff,et al.  On generating FC3 fuzzy rule systems from data using evolution strategies , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Andrzej Skowron,et al.  Rough Sets: A Tutorial , 1998 .

[5]  Jason Catlett,et al.  On Changing Continuous Attributes into Ordered Discrete Attributes , 1991, EWSL.

[6]  Héctor Pomares,et al.  Self-organized fuzzy system generation from training examples , 2000, IEEE Trans. Fuzzy Syst..

[7]  Tsau Young Lin,et al.  Workshop on Rough Sets and Database Mining. , 1995 .

[8]  Dorota Kuchta,et al.  Further remarks on the relation between rough and fuzzy sets , 1992 .

[9]  Jung-Hsien Chiang,et al.  Patterns Discovery on Complex Diagnosis and Biological Data Using Fuzzy Latent Variables , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[10]  Dimitar P. Filev,et al.  Fuzzy SETS AND FUZZY LOGIC , 1996 .

[11]  Yu-Geng Xi,et al.  Nonlinear system modeling by competitive learning and adaptive fuzzy inference system , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[12]  Lawrence O. Hall,et al.  Fuzzy Ants and Clustering , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[13]  Hao Ying The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers , 1998, Autom..

[14]  Maciej Wygralak Rough sets and fuzzy sets—some remarks on interrelations , 1989 .

[15]  Chih-Ming Chen,et al.  An efficient fuzzy classifier with feature selection based on fuzzy entropy , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Thomas Bräunl,et al.  Mobile Robot Simulation with Realistic Error Models , 2004 .

[17]  Tsau Young Lin,et al.  Rough Sets and Data Mining: Analysis of Imprecise Data , 1996 .

[18]  John Yen,et al.  Path planning and execution using fuzzy logic , 1991 .

[19]  Roberto Tagliaferri,et al.  Fuzzy neural networks for classification and detection of anomalies , 1998, IEEE Trans. Neural Networks.

[20]  Shyi-Ming Chen,et al.  A new method for constructing membership functions and fuzzy rules from training examples , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Jeen-Shing Wang,et al.  Self-adaptive recurrent neuro-fuzzy control for an autonomous underwater vehicle , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[22]  Xiao-Jun Zeng,et al.  Approximation theory of fuzzy systems-MIMO case , 1995, IEEE Trans. Fuzzy Syst..

[23]  J. Yen,et al.  A global-local learning algorithm for identifying Takagi-Sugeno-Kang fuzzy models , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[24]  L. Kuncheva Fuzzy rough sets: application to feature selection , 1992 .

[25]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[26]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  A. Nakamura,et al.  Fuzzy rough sets , 1988 .

[28]  K. Saastamoinen,et al.  Medical Data Classification using Logical Similarity Based Measures , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[29]  P. K. Simpson Fuzzy Min-Max Neural Networks-Part 1 : Classification , 1992 .

[30]  Roman Slowinski,et al.  Rough Classification of Patients After Highly Selective Vagotomy for Duodenal Ulcer , 1986, Int. J. Man Mach. Stud..

[31]  Sankar K. Pal,et al.  Rough-Fuzzy MLP: Modular Evolution, Rule Generation, and Evaluation , 2003, IEEE Trans. Knowl. Data Eng..

[32]  Alessandro Saffiotti,et al.  The uses of fuzzy logic in autonomous robot navigation , 1997, Soft Comput..

[33]  Manish Sarkar,et al.  Rough-fuzzy functions in classification , 2002, Fuzzy Sets Syst..

[34]  Yongsheng Ding,et al.  Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[35]  Mohan M. Trivedi,et al.  A neuro-fuzzy controller for mobile robot navigation and multirobot convoying , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[36]  Prabir Kumar Biswas,et al.  A fuzzy min-max neural network classifier with compensatory neuron architecture , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[37]  Jerzy W. Grzymala-Busse,et al.  LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.

[38]  Derek A. Linkens,et al.  Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network , 1994 .

[39]  S Tsumoto,et al.  Induction of medical expert system rules based on rough sets and resampling methods. , 1994, Proceedings. Symposium on Computer Applications in Medical Care.

[40]  Brian C. Lovell,et al.  The Multiscale Classifier , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[42]  Ahmad Lotfi,et al.  Interpretation preservation of adaptive fuzzy inference systems , 1996, Int. J. Approx. Reason..

[43]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[44]  Didier Dubois,et al.  Putting Rough Sets and Fuzzy Sets Together , 1992, Intelligent Decision Support.

[45]  Zdzisław Pawlak,et al.  Rough sets based decision algorithm for treatment of duodenal ulcer by HSV , 1987 .

[46]  Shigeo Abe,et al.  Fuzzy rules extraction directly from numerical data for function approximation , 1995, IEEE Trans. Syst. Man Cybern..

[47]  Hao Ying,et al.  Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control , 1998, IEEE Trans. Fuzzy Syst..

[48]  D. Willaeys,et al.  The use of fuzzy sets for the treatment of fuzzy information by computer , 1981 .

[49]  Witold Pedrycz,et al.  Face Recognition Using an Enhanced Independent Component Analysis Approach , 2007, IEEE Transactions on Neural Networks.

[50]  Pai-Shih lee,et al.  Collision avoidance by fuzzy logic control for automated guided vehicle navigation , 1994, J. Field Robotics.

[51]  Ursula C. Benz,et al.  Measures of classification accuracy based on fuzzy similarity , 2000, IEEE Trans. Geosci. Remote. Sens..

[52]  Dimitar P. Filev,et al.  A generalized defuzzification method via bad distributions , 1991, Int. J. Intell. Syst..

[53]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[54]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[55]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[56]  A. Browder Mathematical Analysis : An Introduction , 2010 .

[57]  A. Nakamura,et al.  A logic for fuzzy data analysis , 1991 .

[58]  Rudy Setiono Extracting M-of-N rules from trained neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[59]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[60]  Qiang Shen,et al.  Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches , 2004, IEEE Transactions on Knowledge and Data Engineering.

[61]  Yoshiki Uchikawa,et al.  On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm , 1992, IEEE Trans. Neural Networks.

[62]  ChangSu Lee,et al.  An Adaptive T-S type Rough-Fuzzy Inference System (ARFIS) for Pattern Classification , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.

[63]  Sung-Kwun Oh,et al.  Multilayer hybrid fuzzy neural networks: synthesis via technologies of advanced computational intelligence , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[64]  Andrzej Czyzewski,et al.  Speaker-Independent Recognition of Digits - Experiments with Neural Networks, Fuzzy Logic and Rough Sets , 1996, Intell. Autom. Soft Comput..

[65]  T. Radhakrishnan,et al.  Hybrid GA Fuzzy Controller for pH Process , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[66]  T. Iwiński Algebraic approach to rough sets , 1987 .

[67]  Roberto Kawakami Harrop Galvão,et al.  Extracting fuzzy control rules from experimental human operator data , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[68]  C C Lee,et al.  FUZZY LOGIC IN CONTROL SYSTEM FUZZY LOGIC CONTROLLER-PART II , 1990 .

[69]  Witold Czajewski,et al.  Rough Sets in Optical Character Recognition , 1998, Rough Sets and Current Trends in Computing.

[70]  Jian Yu,et al.  A Generalized Fuzzy Clustering Regularization Model With Optimality Tests and Model Complexity Analysis , 2007, IEEE Transactions on Fuzzy Systems.

[71]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[72]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[73]  J. Buckley Sugeno type controllers are universal controllers , 1993 .

[74]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[75]  S. Nanda,et al.  Fuzzy rough sets , 1992 .

[76]  G.M. Dimirovski,et al.  Applied adaptive fuzzy-neural inference models: complexity and integrity problems , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[77]  Jeen-Shing Wang,et al.  Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle , 2002, IEEE Trans. Robotics Autom..

[78]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[79]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[80]  Kazuo Tanaka,et al.  Successive identification of a fuzzy model and its applications to prediction of a complex system , 1991 .

[81]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[82]  Saïd Zeghloul,et al.  A mobile robot navigation method using a fuzzy logic approach , 1995, Robotica.

[83]  Z. Pawlak Rough sets and fuzzy sets , 1985 .

[84]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[85]  Frank Hoffmann,et al.  Incremental Evolutionary Design of TSK Fuzzy Controllers , 2007, IEEE Transactions on Fuzzy Systems.

[86]  S Tsumoto,et al.  Knowledge discovery in clinical databases based on variable precision rough set model. , 1995, Proceedings. Symposium on Computer Applications in Medical Care.

[87]  J. Bezdek,et al.  Fuzzy partitions and relations; an axiomatic basis for clustering , 1978 .

[88]  Chang Su Lee,et al.  A Rough-Fuzzy Controller for Autonomous Mobile Robot Navigation , 2006, 2006 3rd International IEEE Conference Intelligent Systems.

[89]  Sunanda Mitra,et al.  Adaptive fuzzy leader clustering of complex data sets in pattern recognition , 1992, IEEE Trans. Neural Networks.

[90]  Tzung-Pei Hong,et al.  A Generalized Version Space Learning Algorithm for Noisy and Uncertain Data , 1997, IEEE Trans. Knowl. Data Eng..

[91]  Hao Ying,et al.  General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators , 1998, IEEE Trans. Fuzzy Syst..

[92]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[93]  Amitava Chatterjee,et al.  Influential rule search scheme (IRSS) - a new fuzzy pattern classifier , 2004, IEEE Transactions on Knowledge and Data Engineering.

[94]  B. Yegnanarayana,et al.  Rough-fuzzy membership functions , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[95]  D. Willaeys,et al.  THE USE OF FUZZY SETS FOR THE TREATMENT OF FUZZY INFORMATION BY COMPUTER , 1993 .

[96]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[97]  Xiao-Jun Zeng,et al.  Approximation theory of fuzzy systems-SISO case , 1994, IEEE Trans. Fuzzy Syst..

[98]  Thomas Bräunl Embedded robotics - mobile robot design and applications with embedded systems (2. ed.) , 2003 .

[99]  George K. I. Mann,et al.  Adaptive hierarchical tuning of fuzzy controllers , 2002, Expert Syst. J. Knowl. Eng..

[100]  Hassan B. Kazemian Study of Learning Fuzzy Controllers , 2001, Expert Syst. J. Knowl. Eng..

[101]  M. Jamshidi,et al.  Soft computing paradigms for hybrid fuzzy controllers: experiments and applications , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[102]  Bart Kosko,et al.  The shape of fuzzy sets in adaptive function approximation , 2001, IEEE Trans. Fuzzy Syst..

[103]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[104]  Simon X. Yang,et al.  Neurofuzzy-Based Approach to Mobile Robot Navigation in Unknown Environments , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[105]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[106]  Witold Pedrycz,et al.  Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.

[107]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[108]  Chun-Fei Hsu,et al.  Self-Organizing Adaptive Fuzzy Neural Control for a Class of Nonlinear Systems , 2007, IEEE Transactions on Neural Networks.

[109]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[110]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[111]  Nick Cercone,et al.  Discovering Rules from Data for Water Demand Prediction , 1995 .

[112]  Hoai Bac Le,et al.  Using Rough Set in Feature Selection and Reduction in Face Recognition Problem , 2005, PAKDD.

[113]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[114]  Hao Ying,et al.  General Takagi-Sugeno fuzzy systems are universal approximators , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[115]  Ping Kuang,et al.  A Novel FCM's Initial Parameters Acquisition Method , 2006, First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06).

[116]  Jorge Casillas,et al.  Obtaining a fuzzy controller with high interpretability in mobile robots navigation , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[117]  Ahmad Lotfi,et al.  Learning fuzzy inference systems using an adaptive membership function scheme , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[118]  Juan Luis Castro,et al.  Fuzzy systems with defuzzification are universal approximators , 1996, IEEE Trans. Syst. Man Cybern. Part B.