Burst Strength Analysis of Casing With Geometrical Imperfections

Accurately predicting the burst strength is very important in the casing design for the oil and gas industry. In this paper, finite element analysis is performed for an infinitely long thick walled casing with geometrical imperfections subjected to internal pressure. A comparison with a series of full-scale experiments was conducted to verify the accuracy and reliability of the finite element analysis. Furthermore, three predictive equations were evaluated using the test data, and the Klever equation was concluded to give the most accurate prediction of burst strength. The finite element analysis was then extended to study the effects of major factors on the casing burst strength. Results showed that the initial eccentricity and material hardening parameter had important effects on the burst strength, while the effect of the initial ovality was small.