Relative uniformly positive entropy of induced amenable group actions

Let $G$ be a countable infinite discrete amenable group.It should be noted that a $G$-system $(X,G)$ naturally induces a $G$-system $(\mathcal{M}(X),G)$, where $\mathcal{M}(X)$ denotes the space of Borel probability measures on the compact metric space $X$ endowed with the weak*-topology. A factor map $\pi\colon (X,G)\to(Y,G)$ between two $G$-systems induces a factor map $\widetilde{\pi}\colon(\mathcal{M}(X),G)\to(\mathcal{M}(Y),G)$. It turns out that $\widetilde{\pi}$ is open if and only if $\pi$ is open. When $Y$ is fully supported, it is shown that $\pi$ has relative uniformly positive entropy if and only if $\widetilde{\pi}$ has relative uniformly positive entropy.

[1]  U. Darji,et al.  Uniformly positive entropy of induced transformations , 2020, Ergodic Theory and Dynamical Systems.

[2]  Yixiao Qiao,et al.  Zero sequence entropy and entropy dimension , 2016 .

[3]  E. Akin,et al.  Dynamics of induced systems , 2014, Ergodic Theory and Dynamical Systems.

[4]  Anima Nagar,et al.  Inducing sensitivity on hyperspaces , 2010 .

[5]  E. Glasner,et al.  Local entropy theory , 2009, Ergodic Theory and Dynamical Systems.

[6]  Wen Huang,et al.  Relative entropy tuples, relative u.p.e. and c.p.e. extensions , 2007 .

[7]  Xiangdong Ye,et al.  A local variational relation and applications , 2006 .

[8]  Hanfeng Li,et al.  Independence in topological and C*-dynamics , 2006, math/0603585.

[9]  Wen Huang,et al.  A local variational principle for conditional entropy , 2006, Ergodic Theory and Dynamical Systems.

[10]  J. Banks,et al.  Chaos for induced hyperspace maps , 2005 .

[11]  Hanfeng Li,et al.  Dynamical entropy in Banach spaces , 2004, math/0407386.

[12]  Sergey Bezuglyi,et al.  Topics in dynamics and ergodic theory , 2003 .

[13]  Mike Boyle,et al.  Residual entropy, conditional entropy and subshift covers , 2002 .

[14]  T. Downarowicz,et al.  Fiber entropy and conditional variational principles in compact non-metrizable spaces , 2002 .

[15]  K. Park,et al.  Relative Topological Pinsker Factors and Entropy Pairs , 2001 .

[16]  M. Lemanczyk,et al.  A note on the existence of a largest topological factor with zero entropy , 2000 .

[17]  B. Weiss,et al.  Entropy and mixing for amenable group actions. , 2000, math/0005304.

[18]  E. Glasner,et al.  A variation on the variational principle and applications to entropy pairs , 1997, Ergodic Theory and Dynamical Systems.

[19]  Benjamin Weiss,et al.  Quasi-factors of zero-entropy systems , 1995 .

[20]  D. Rudolph,et al.  Entropy pairs for a measure , 1995, Ergodic Theory and Dynamical Systems.

[21]  B. Weiss,et al.  Strictly ergodic, uniform positive entropy models , 1994 .

[22]  F. Blanchard A disjointness theorem involving topological entropy , 1993 .

[23]  T. Ward,et al.  The Abramov-Rokhlin entropy addition formula for amenable group actions , 1992 .

[24]  F. Blanchard Fully positive topological entropy and topological mixing , 1991 .

[25]  Mark G. Karpovsky,et al.  Coordinate density of sets of vectors , 1978, Discret. Math..

[26]  F. Ledrappier,et al.  A Relativised Variational Principle for Continuous Transformations , 1977 .

[27]  R. Zimmer Hyperfinite factors and amenable ergodic actions , 1977 .

[28]  Karl Sigmund,et al.  Topological dynamics of transformations induced on the space of probability measures , 1975 .

[29]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[30]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .