Complex and integral laminated lattices

In an earlier paper we studied real laminated lattices (or Z-modules) A", where A, is the lattice of even integers, and A" is obtained by stacking layers of a suitable (n — l)-dimensional lattice A"_, as densely as possible, keeping the same minimal norm. The present paper considers two generalizations: (a) complex and quaternionic lattices, obtained by replacing Z-module by /-module, where J may be the Eisenstein, Gaussian or Hurwitzian integers, etc., and (b) integral laminated lattices, in which A" is required to be an integral lattice with the prescribed minimal norm. This enables us to give a partial answer to a question of J. G. Thompson on integral lattices, and to explain some of the computer-generated results of Plesken and Pohst on this problem. Also a number of familiar lattices now arise in a canonical way. For example the Coxeter-Todd lattice is the 6-dimensional integral laminated lattice over Z( to ) of minimal norm 2. The paper includes tables of the best real integral lattices in up to 24 dimensions.

[1]  R. Wilson The complex leech lattice and maximal subgroups of the Suzuki group , 1983 .

[2]  N. J. A. Sloane,et al.  The Coxeter–Todd lattice, the Mitchell group, and related sphere packings , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Sergeĭ Sergeevich Ryshkov The geometry of positive quadratic forms , 1983 .

[4]  N. J. A. Sloane,et al.  The Unimodular Lattices of Dimension up to 23 and the Minkowski-Siegel Mass Constants , 1982, Eur. J. Comb..

[5]  N. Sloane,et al.  On the enumeration of lattices of determinant one , 1982 .

[6]  S. Norton A bound for the covering radius of the Leech lattice , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  N. Sloane,et al.  The covering radius of the Leech lattice , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  R. T. Curtis,et al.  A new combinatorial approach to M24 , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  T. N. Shorey On linear forms in the logarithms of algebraic numbers , 1976 .

[10]  A. Cohen,et al.  Finite complex reflection groups , 1976 .

[11]  R. T Curtis On subgroups of ·0. I. Lattice stabilizers , 1973 .

[12]  Hans Niemeier Definite quadratische formen der dimension 24 und diskriminante 1 , 1973 .

[13]  P. Cohn Symmetric Bilinear Forms , 1973 .

[14]  George Leo Watson The number of minimum points of a positive quadratic form , 1971 .

[15]  N. Sloane,et al.  Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.

[16]  J. H. Lindsey,et al.  A correlation between ₄(3), the Suzuki group, and the Conway group , 1971 .

[17]  J. Lindsey On the Suzuki and Conway groups , 1970 .

[18]  H. M. Stark,et al.  A complete determination of the complex quadratic fields of class-number one. , 1967 .

[19]  A. Hurwitz Über die Zahlentheorie der Quaternionen , 1963 .

[20]  M. Kneser,et al.  Klassenzahlen definiter quadratischer Formen , 1957 .

[21]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[22]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[23]  J. A. Todd,et al.  An Extreme Duodenary Form , 1953, Canadian Journal of Mathematics.

[24]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[25]  H. S. M. Coxeter,et al.  The Polytope 2 21 Whose Twenty-Seven Vertices Correspond to the Lines to the General Cubic Surface , 1940 .

[26]  H. F. Blichfeldt The minimum values of positive quadratic forms in six, seven and eight variables , 1935 .

[27]  H. H. Mitchell Determination of All Primitive Collineation Groups in More than Four Variables which Contain Homologies , 1914 .

[28]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .