Online Black-Box Algorithm Portfolios for Continuous Optimization

In black-box function optimization, we can choose from a wide variety of heuristic algorithms that are suited to different functions and computation budgets. Given a particular function to be optimized, the problem we consider in this paper is how to select the appropriate algorithm. In general, this problem is studied in the field of algorithm portfolios; we treat the algorithms as black boxes themselves and consider online selection (without learning mapping from problem features to best algorithms a priori and dynamically switching between algorithms during the optimization run).

[1]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[2]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[3]  Lars Kotthoff,et al.  Algorithm Selection for Combinatorial Search Problems: A Survey , 2012, AI Mag..

[4]  N. Hansen,et al.  Real-Parameter Black-Box Optimization Benchmarking: Experimental Setup , 2010 .

[5]  Mario A. Muñoz,et al.  The Algorithm Selection Problem on the Continuous Optimization Domain , 2013 .

[6]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[7]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[8]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[9]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 1985 .

[10]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[11]  András György,et al.  Efficient Multi-Start Strategies for Local Search Algorithms , 2009, J. Artif. Intell. Res..

[12]  Andreas Nürnberger,et al.  Computational Intelligence in Intelligent Data Analysis , 2013, Studies in Computational Intelligence.

[13]  Bernd Bischl,et al.  Algorithm selection based on exploratory landscape analysis and cost-sensitive learning , 2012, GECCO '12.

[14]  Stephen F. Smith,et al.  A Simple Distribution-Free Approach to the Max k-Armed Bandit Problem , 2006, CP.

[15]  Michèle Sebag,et al.  Toward comparison-based adaptive operator selection , 2010, GECCO '10.

[16]  Petr Baudis,et al.  COCOpf: An Algorithm Portfolio Framework , 2014, ArXiv.

[17]  Stephen F. Smith,et al.  The Max K-Armed Bandit: A New Model of Exploration Applied to Search Heuristic Selection , 2005, AAAI.

[18]  Dirk Thierens,et al.  Adaptive Strategies for Operator Allocation , 2007, Parameter Setting in Evolutionary Algorithms.

[19]  Frédéric Benhamou Principles and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings , 2006, CP.

[20]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[21]  Enrique Alba,et al.  Proceedings of the 15th annual conference on Genetic and evolutionary computation , 2013, GECCO 2013.

[22]  Neil D. Lawrence,et al.  Missing Data in Kernel PCA , 2006, ECML.

[23]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[24]  Lars Kottho,et al.  Algorithm Selection for Combinatorial Search Problems: A survey , 2012 .

[25]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[26]  Fei Peng,et al.  Population-Based Algorithm Portfolios for Numerical Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[27]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[28]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[29]  Jürgen Schmidhuber,et al.  Algorithm portfolio selection as a bandit problem with unbounded losses , 2011, Annals of Mathematics and Artificial Intelligence.

[30]  Shiu Yin Yuen,et al.  Which algorithm should i choose at any point of the search: an evolutionary portfolio approach , 2013, GECCO '13.