High breakdown estimation methods for Phase I multivariate control charts

A goal of Phase I analysis of multivariate data is to identify multivariate outliers and step changes so that the Phase II estimated control limits are sufficiently accurate. High breakdown estimation methods based on the minimum volume ellipsoid (MVE) or the minimum covariance determinant (MCD) are well suited for detecting multivariate outliers in data. As a result of the inherent difficulties in their computation, many algorithms have been proposed to detect multivariate outliers. Due to their availability in standard software packages, we consider the subsampling algorithm to obtain the MVE estimators and the FAST-MCD algorithm to obtain the MCD estimators. Previous studies have not clearly determined which of these two available estimation methods is best for control chart applications. The comprehensive simulation study presented in this paper gives guidance for the correct use of each estimator. Control limits are provided. High breakdown estimation methods based on the MCD and MVE approaches can be applied to a wide variety of multivariate quality control data. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Douglas M. Hawkins,et al.  Exact iterative computation of the robust multivariate minimum volume ellipsoid estimator , 1993 .

[2]  D. G. Simpson,et al.  Unmasking Multivariate Outliers and Leverage Points: Comment , 1990 .

[3]  Lawrence G. Tatum Robust estimation of the process standard deviation for control charts , 1997 .

[4]  David J. Olive,et al.  Inconsistency of Resampling Algorithms for High-Breakdown Regression Estimators and a New Algorithm , 2002 .

[5]  D. Titterington Optimal design: Some geometrical aspects of D-optimality , 1975 .

[6]  M. Jhun,et al.  Asymptotics for the minimum covariance determinant estimator , 1993 .

[7]  David M. Rocke Robust control charts , 1989 .

[8]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[9]  Benjamin M. Adams,et al.  Robust Monitoring of Contaminated Data , 2005 .

[10]  Douglas M. Hawkins,et al.  Outliers Everywhere’, - discussion of ‘Unmasking Multivariate Outliers and Leverage Points , 1990 .

[11]  William H. Woodall,et al.  Statistical monitoring of nonlinear product and process quality profiles , 2007, Qual. Reliab. Eng. Int..

[12]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[13]  J. Birch,et al.  On the Distribution of Hotelling ’ s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator , 2005 .

[14]  William H. Woodall,et al.  A Comparison of Multivariate Control Charts for Individual Observations , 1996 .

[15]  José Agulló Candela Exact Iterative Computation of the Multivariate Minimum Volume Ellipsoid Estimator with a Branch and Bound Algorithm , 1996 .

[16]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[17]  Christophe Croux,et al.  An easy way to increase the finite-sample efficiency of the resampled minimum volume ellipsoid estimator , 1997 .

[18]  David M. Rocke,et al.  Computable Robust Estimation of Multivariate Location and Shape in High Dimension Using Compound Estimators , 1994 .

[19]  N. José Alberto Vargas,et al.  Robust Estimation in Multivariate Control Charts for Individual Observations , 2003 .

[20]  David M. Rocke Xq and Rq charts: Robust control charts , 1992 .

[21]  Ruben H. Zamar,et al.  Robust Estimates of Location and Dispersion for High-Dimensional Datasets , 2002, Technometrics.

[22]  Peter J. Rousseeuw,et al.  Robust Distances: Simulations and Cutoff Values , 1991 .

[23]  Douglas C. Montgomery,et al.  A performance study for multivariate location and shape estimators , 2002 .

[24]  William H. Woodall,et al.  Distribution of Hotelling's T2 Statistic Based on the Successive Differences Estimator , 2006 .

[25]  David M. Rocke,et al.  Heuristic Search Algorithms for the Minimum Volume Ellipsoid , 1993 .

[26]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[27]  Charles P. Quesenberry,et al.  THE MULTIVARIATE SHORT-RUN SNAPSHOT Q CHART , 2001 .

[28]  David L. Woodruff,et al.  Identification of Outliers in Multivariate Data , 1996 .

[29]  Douglas M. Hawkins,et al.  A Feasible Solution Algorithm for the Minimum Volume Ellipsoid Estimator in Multivariate Data , 1993 .

[30]  Douglas M. Hawkins,et al.  The feasible solution algorithm for the minimum covariance determinant estimator in multivariate data , 1994 .

[31]  Dankmar Böhning,et al.  The lower bound method in probit regression , 1999 .

[32]  José Julio Espina Agulló New algorithms for computing the least trimmed squares regression estimator , 2001 .

[33]  A note on finite-sample efficiencies of estimators for the minimum volume ellipsoid , 2002 .

[34]  P. L. Davies,et al.  The asymptotics of Rousseeuw's minimum volume ellipsoid estimator , 1992 .

[35]  David L. Woodruff,et al.  Robust estimation of multivariate location and shape , 1997 .

[36]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[37]  John C. Young,et al.  Multivariate statistical process control with industrial applications , 2002, ASA-SIAM series on statistics and applied probability.

[38]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[39]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[40]  C. Atwood Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .

[41]  A. Hadi A Modification of a Method for the Detection of Outliers in Multivariate Samples , 1994 .

[42]  Douglas M. Hawkins,et al.  Improved Feasible Solution Algorithms for High Breakdown Estimation , 1999 .

[43]  A. Hadi Identifying Multiple Outliers in Multivariate Data , 1992 .

[44]  David L. Woodruff,et al.  Computation of robust estimates of multivariate location and shape , 1993 .

[45]  P. L. Davies,et al.  Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .