Robust adaptive neuro-fuzzy control of uncertain nonholonomic systems

In this paper, we present an adaptive neuro-fuzzy controller design for a class of uncertain nonholonomic systems in the perturbed chained form with unknown virtual control coefficients and strong drift nonlinearities. The robust adaptive neuro-fuzzy control laws are developed using state scaling and backstepping. Semi-global uniform ultimate boundedness of all the signals in the closed-loop are guaranteed, and the system states are proven to converge to a small neighborhood of zero. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. By using fuzzy logic approximation, the proposed control is free of control singularity problem. An adaptive control based switching strategy is proposed to overcome the uncontrollability problem associated with x0(t0) = 0.

[1]  Tao Zhang,et al.  Stable Adaptive Neural Network Control , 2001, The Springer International Series on Asian Studies in Computer and Information Science.

[2]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[3]  Marios M. Polycarpou,et al.  A Robust Adaptive Nonlinear Control Design , 1993, 1993 American Control Conference.

[4]  Shuzhi Sam Ge,et al.  Adaptive robust stabilization of dynamic nonholonomic chained systems , 2001, J. Field Robotics.

[5]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Control of Robotic Manipulators , 1999, World Scientific Series in Robotics and Intelligent Systems.

[6]  W. Huo,et al.  Adaptive stabilization of uncertain dynamic non-holonomic systems , 1999 .

[7]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[8]  Tao Zhang,et al.  Design and performance analysis of a direct adaptive controller for nonlinear systems , 1999, Autom..

[9]  Sergey V. Drakunov,et al.  Stabilization and tracking in the nonholonomic integrator via sliding modes , 1996 .

[10]  Alessandro Astolfi,et al.  State and output feedback stabilization of multiple chained systems with discontinuous control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[11]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[12]  R. Colbaugh,et al.  Adaptive control of nonholonomic mechanical systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[14]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[15]  George A. Rovithakis Stable adaptive neuro-control design via Lyapunov function derivative estimation , 2001, Autom..

[16]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[17]  Shuzhi Sam Ge,et al.  Feedback linearization and stabilization of second-order non-holonomic chained systems , 2001 .

[18]  Linda Bushnell,et al.  Stabilization of multiple input chained form control systems , 1995 .

[19]  Zhong-Ping Jiang,et al.  Robust exponential regulation of nonholonomic systems with uncertainties , 2000, Autom..

[20]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[21]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[22]  Shuzhi Sam Ge,et al.  Stabilization of nonholonomic chained systems via nonregular feedback linearization , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[23]  Wei Huo,et al.  Exponential stabilization of non-holonomic systems: An ENI approach , 2001 .

[24]  Shuzhi Sam Ge,et al.  Adaptive stabilization of uncertain nonholonomic systems by state and output feedback , 2003, Autom..

[25]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[27]  Tao Zhang,et al.  A direct adaptive controller for dynamic systems with a class of nonlinear parameterizations , 1999, Autom..

[28]  Shuzhi Sam Ge,et al.  Adaptive Neuro-Fuzzy Control of Non-Affine Nonlinear Systems , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[29]  Elias B. Kosmatopoulos,et al.  Universal stabilization using control Lyapunov functions, adaptive derivative feedback, and neural network approximators , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[31]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[32]  Mahmut Reyhanoglu,et al.  Nonlinear Control Of Wheeled Mobile Robots , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Hugang Han,et al.  Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators , 2001, IEEE Trans. Fuzzy Syst..

[34]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[35]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[36]  Linda Bushnell,et al.  Stabilization of multiple input chained form control systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[37]  R. Murray,et al.  Convergence Rates for Nonholonomic Systems in Power Form , 1993, 1993 American Control Conference.

[38]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[39]  Linda Bushnell,et al.  Steering Three-Input Chained Form Nonholonomic Systems Using Sinusoids: The Fire Truck Example , 1993 .

[40]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[41]  S. Ge,et al.  Robust motion/force control of uncertain holonomic/nonholonomic mechanical systems , 2004, IEEE/ASME Transactions on Mechatronics.

[42]  V. I. Utkin,et al.  Stabilization of non-holonomic mobile robots using Lyapunov functions for navigation and sliding mode control , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[43]  Frank L. Lewis,et al.  Feedback linearization using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[44]  Ole Jakob Sørdalen,et al.  Conversion of the kinematics of a car with n trailers into a chained form , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[45]  A. Richards,et al.  Proceedings of the European Control Conference , 2009 .

[46]  J.P. Hespanha,et al.  Towards the supervisory control of uncertain nonholonomic systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[47]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[48]  Bor-Sen Chen,et al.  Robust tracking designs for both holonomic and nonholonomic constrained mechanical systems: adaptive fuzzy approach , 2000, IEEE Trans. Fuzzy Syst..

[49]  Zhong-Ping Jiang,et al.  A recursive technique for tracking control of nonholonomic systems in chained form , 1999, IEEE Trans. Autom. Control..

[50]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[51]  Mitsuji Sampei,et al.  Arbitrary path tracking control of articulated vehicles using nonlinear control theory , 1995, IEEE Trans. Control. Syst. Technol..