Design Methodology for BiCMOS Millimeter-Wave Integrated Circuits

The design of millimeter-wave circuits involves understanding and dealing with new challenges, which make every design step crucial for a successful design. For instance, the high frequency of operation makes almost every layout connection behave as a transmission line, and therefore, they need to be adequately modeled and sized. In addition, transistors work close to their maximum operating frequency and voltages, and thus adequate transistor layout and biasing are a must, not to mention the fact that some components like transmission lines or transformers are not readily available in the design kits, and some other available components are not adequately modeled upto millimeter-wave frequencies. This means that the classical lower frequency design methodology consisting of sequential schematic simulation, layout implementation, and parasitic extraction is no longer valid, as the parasitics and electromagnetic behavior of every component and connection need to be taken into account from the very beginning. This chapter will outline the design methodology to be followed for successful, time- and resource-efficient design of millimeter-wave integrated circuits.