A novel strategy to characterize the pattern of β-lactam antibiotic-induced drug resistance in Acinetobacter baumannii

[1]  O. Ergonul,et al.  The association between Acinetobacter baumannii infections and the COVID-19 pandemic in an intensive care unit , 2022, Scientific Reports.

[2]  E. Wellington,et al.  Mechanisms Involved in the Active Secretion of CTX-M-15 β-Lactamase by Pathogenic Escherichia coli ST131 , 2021, Antimicrobial agents and chemotherapy.

[3]  R. Bonomo,et al.  The urgent need for metallo-β-lactamase inhibitors: an unattended global threat , 2021, The Lancet Infectious Diseases.

[4]  S. Joshi,et al.  Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital‐acquired infections: a scientific review , 2021, Journal of applied microbiology.

[5]  I. Kyriakidis,et al.  Acinetobacter baumannii Antibiotic Resistance Mechanisms , 2021, Pathogens.

[6]  Ping-Zhang Wang,et al.  Proteomic Analyses of Acinetobacter baumannii Clinical Isolates to Identify Drug Resistant Mechanism , 2021, Frontiers in Cellular and Infection Microbiology.

[7]  Jonghwan Kim,et al.  Significant increase in the secretion of extracellular vesicles and antibiotics resistance from methicillin-resistant Staphylococcus aureus induced by ampicillin stress , 2020, Scientific Reports.

[8]  Benjamin Plackett Why big pharma has abandoned antibiotics , 2020, Nature.

[9]  H. Jenssen,et al.  The Role of Proteomics in Bacterial Response to Antibiotics , 2020, Pharmaceuticals.

[10]  H. Goli,et al.  Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran , 2020, BMC Research Notes.

[11]  K. Ganbarov,et al.  Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies , 2020, Infection and drug resistance.

[12]  D. Alshayban,et al.  Evaluation of acinetobacter baumannii pneumonia among critically ill patients in a tertiary care hospital in Saudi Arabia , 2020, Heliyon.

[13]  R. Bonomo,et al.  Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace , 2020, Biomolecules.

[14]  Yiping Zhou,et al.  Multidrug resistant and extensively drug resistant Acinetobacter baumannii hospital infection associated with high mortality: a retrospective study in the pediatric intensive care unit , 2020, BMC Infectious Diseases.

[15]  K. Bush,et al.  Critical analysis of antibacterial agents in clinical development , 2020, Nature Reviews Microbiology.

[16]  Engin Koçak,et al.  Comparative Proteomic Analysis of Escherichia coli Under Ofloxacin Stress , 2020, Turkish journal of pharmaceutical sciences.

[17]  T. Nagakubo,et al.  Cracking Open Bacterial Membrane Vesicles , 2020, Frontiers in Microbiology.

[18]  S. Liew,et al.  The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. , 2019, The Journal of infection.

[19]  P. Nordmann,et al.  Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria , 2019, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  Antibiotic resistance threats in the United States, 2019 , 2019 .

[21]  Yanhua Li,et al.  Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress , 2019, BMC Veterinary Research.

[22]  J. D. Nunes-Miranda,et al.  Multiomics Assessment of Gene Expression in a Clinical Strain of CTX-M-15-Producing ST131 Escherichia coli , 2019, Front. Microbiol..

[23]  Jianying Zhou,et al.  Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia , 2019, Medicine.

[24]  Katherine E Goodman,et al.  A Decision Tree Using Patient Characteristics to Predict Resistance to Commonly Used Broad-Spectrum Antibiotics in Children With Gram-Negative Bloodstream Infections. , 2019, Journal of the Pediatric Infectious Diseases Society.

[25]  I. Okeke,et al.  The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis , 2019, Emerging microbes & infections.

[26]  M. Blaskovich The Fight Against Antimicrobial Resistance Is Confounded by a Global Increase in Antibiotic Usage. , 2018, ACS infectious diseases.

[27]  W. Duszynska,et al.  Analysis of Acinetobacter baumannii hospital infections in patients treated at the intensive care unit of the University Hospital, Wroclaw, Poland: a 6-year, single-center, retrospective study , 2018, Infection and drug resistance.

[28]  J. Kasouati,et al.  Intensive care unit-acquired Acinetobacter baumannii infections in a Moroccan teaching hospital: epidemiology, risk factors and outcome. , 2017, Germs.

[29]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[30]  Y. Sham,et al.  Discovery of 1‐Hydroxypyridine‐2(1H)‐thione‐6‐carboxylic Acid as a First‐in‐Class Low‐Cytotoxic Nanomolar Metallo β‐Lactamase Inhibitor , 2017, ChemMedChem.

[31]  Cassandra Willyard The drug-resistant bacteria that pose the greatest health threats , 2017, Nature.

[32]  J. Krieger,et al.  Survival proteomes: the emerging proteotype of antimicrobial resistance. , 2016, FEMS microbiology reviews.

[33]  G. Meletis,et al.  Carbapenem resistance: overview of the problem and future perspectives , 2016, Therapeutic advances in infectious disease.

[34]  R. Bonomo,et al.  Combination Therapy for Extreme Drug-Resistant Acinetobacter baumannii: Ready for Prime Time? , 2015, Critical care medicine.

[35]  Vishvanath Tiwari,et al.  Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii , 2014, Front. Microbiol..

[36]  M. Gross Antibiotics in crisis , 2013, Current Biology.

[37]  Anren Hu,et al.  Diagnosis of β-lactam resistance in Acinetobacter baumannii using shotgun proteomics and LC-nano-electrospray ionization ion trap mass spectrometry. , 2013, Analytical chemistry.

[38]  A. Kapil,et al.  Comparative Proteomics of Inner Membrane Fraction from Carbapenem-Resistant Acinetobacter baumannii with a Reference Strain , 2012, PloS one.

[39]  A. Oberoi,et al.  Acinetobacter infections in a tertiary level intensive care unit in northern India: epidemiology, clinical profiles and outcomes. , 2012, Journal of infection and public health.

[40]  Steven E Eckert,et al.  Ready for prime time? , 2011, The International journal of oral & maxillofacial implants.

[41]  Bruce A. Stanton,et al.  Long-Distance Delivery of Bacterial Virulence Factors by Pseudomonas aeruginosa Outer Membrane Vesicles , 2009, PLoS pathogens.

[42]  Ronald N. Jones,et al.  Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. , 2008, The Journal of antimicrobial chemotherapy.

[43]  P. Nordmann,et al.  Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. , 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[44]  L. Rice,et al.  Identification of a New Allelic Variant of the Acinetobacter baumannii Cephalosporinase , ADC-7-Lactamase : Defining a Unique Family of Class C Enzymes ‡ , 2005 .

[45]  Agneta Richter-Dahlfors,et al.  Vesicle-Mediated Export and Assembly of Pore-Forming Oligomers of the Enterobacterial ClyA Cytotoxin , 2003, Cell.

[46]  F. Fernández-Cuenca,et al.  Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. , 2003, The Journal of antimicrobial chemotherapy.

[47]  Mitchell L. Cohen Epidemiology of Drug Resistance: Implications for a Post—Antimicrobial Era , 1992, Science.

[48]  D. E. Rogers,et al.  Social ramifications of control of microbial disease. , 1982, The Johns Hopkins medical journal.

[49]  I. Phillips,et al.  beta-Lactamase detection by three simple methods: Intralactam, nitrocefin and acidimetric. , 1980, The Journal of antimicrobial chemotherapy.

[50]  B. Sankaran,et al.  A Triple Mutant in the (cid:2) -loop of TEM-1 (cid:3) -Lactamase Changes the Substrate Profile via a Large Conformational Change and an Altered General Base for Catalysis * , 2020 .

[51]  M. Hackel,et al.  Antimicrobial susceptibility of Gram‐negative ESKAPE pathogens isolated from hospitalized patients with intra‐abdominal and urinary tract infections in Asia‐Pacific countries: SMART 2013‐2015 , 2017, Journal of medical microbiology.

[52]  M. Hackel,et al.  Resistance Rates of Intra-Abdominal Isolates from Intensive Care Units and Non-Intensive Care Units in the United States: The Study for Monitoring Antimicrobial Resistance Trends 2010-2012. , 2015, Surgical infections.

[53]  Tae-Young Roh,et al.  Staphylococcus aureus Extracellular Vesicles Carry Biologically Active (cid:1) -Lactamase , 2013 .

[54]  N. Woodford,et al.  The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. , 2006, Trends in microbiology.

[55]  G. Araj,et al.  Recent developments in beta lactamases and extended spectrum beta lactamases. , 2003, BMJ.

[56]  C. O'callaghan,et al.  beta-lactam antibiotics. , 1979, Giornale italiano di chemioterapia.