Inhibition of electric field on inception soot formation: A ReaxFF MD and DFT study

[1]  Wei Yu,et al.  Decomposition mechanism of hydrofluorocarbon (HFC-245fa) in supercritical water: A ReaxFF-MD and DFT study , 2022, International Journal of Hydrogen Energy.

[2]  Zhao Wang,et al.  Selective and tunable H2 adsorption/sensing performance of W-doped graphene under external electric fields: A DFT study , 2022, International Journal of Hydrogen Energy.

[3]  Liejin Guo,et al.  Regulation mechanism of coal gasification in supercritical water for hydrogen production: A ReaxFF-MD simulation , 2022, International Journal of Hydrogen Energy.

[4]  Weixing Zhou,et al.  Inhibition Mechanism of Electric Field on Polycyclic Aromatic Hydrocarbon Formation during n-decane Pyrolysis: A ReaxFF MD and DFT Study , 2022, Journal of the Energy Institute.

[5]  Zhiyuan Wang,et al.  Anti-coking performance of Cr/CeO2 coating prepared by high velocity oxygen fuel spraying , 2022, Fuel Processing Technology.

[6]  Steven J. Plimpton,et al.  LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales , 2021, Computer Physics Communications.

[7]  Xiangyong Huang,et al.  Formation of soot particles in methane and ethylene combustion: A reactive molecular dynamics study , 2021, International Journal of Hydrogen Energy.

[8]  Weiguo Cao,et al.  ReaxFF molecular dynamics simulations of n-eicosane reaction mechanisms during pyrolysis and combustion , 2021, International Journal of Hydrogen Energy.

[9]  Y. Gan,et al.  Evaporation and combustion characteristics of an ethanol fuel droplet in a DC electric field , 2021 .

[10]  Xin Guo,et al.  Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics , 2021 .

[11]  Qi Zhang,et al.  The influence of microwave electric field on the sulfur vacancy formation over MoS2 clusters and the corresponding properties: A DFT study , 2021 .

[12]  Dzung T. Hoang,et al.  Mechanism of proton transport in water clusters and the effect of electric fields: A DFT study , 2021 .

[13]  E. Fernandes,et al.  Electric field assisted mass production of carbon nanotubes on 303L stainless steel , 2021 .

[14]  J. V. van Oijen,et al.  Effects of hydrogen enrichment and water vapour dilution on soot formation in laminar ethylene counterflow flames , 2020 .

[15]  W. Zeng,et al.  Electric field effects on hydrogen/methane oxidation: A reactive force field based molecular dynamics study , 2020 .

[16]  J. Xiong,et al.  The adsorption of NO onto an Al-doped ZnO monolayer and the effects of applied electric fields: A DFT study , 2020, Computational and Theoretical Chemistry.

[17]  Haoran Yuan,et al.  Polyethylene high-pressure pyrolysis: Better product distribution and process mechanism analysis , 2020 .

[18]  A. Ciajolo,et al.  Optical band gap analysis of soot and organic carbon in premixed ethylene flames: Comparison of in-situ and ex-situ absorption measurements , 2020 .

[19]  J. Akroyd,et al.  Dynamic polarity of curved aromatic soot precursors , 2019, Combustion and Flame.

[20]  Jinhua Wang,et al.  Effect of hydrogen enrichment and electric field on lean CH4/air flame propagation at elevated pressure , 2019, International journal of hydrogen energy.

[21]  N. Swaminathan,et al.  Study of polycyclic aromatic hydrocarbons (PAHs) in hydrogen-enriched methane diffusion flames , 2019, International Journal of Hydrogen Energy.

[22]  Nick A. Eaves,et al.  The role of reactive PAH dimerization in reducing soot nucleation reversibility , 2019, Proceedings of the Combustion Institute.

[23]  A. V. van Duin,et al.  Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study , 2019, Fuel.

[24]  M. Frenklach,et al.  On the low-temperature limit of HACA , 2019, Proceedings of the Combustion Institute.

[25]  S. Pratsinis,et al.  Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. , 2018, Physical chemistry chemical physics : PCCP.

[26]  A. V. van Duin,et al.  Development of a Charge-Implicit ReaxFF Potential for Hydrocarbon Systems. , 2018, Journal of Physical Chemistry Letters.

[27]  T. Sakai,et al.  First-principles study of coronene adsorption on hexagonal boron nitride substrate , 2017 .

[28]  C. Fernandez-Pello,et al.  The role of non-thermal electrons in flame acceleration , 2017 .

[29]  Saientan Bag,et al.  Ultrahigh charge carrier mobility in nanotube encapsulated coronene stack , 2017, 1703.10991.

[30]  H. Michelsen Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs , 2017 .

[31]  Y. Mortazavi,et al.  Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation , 2016 .

[32]  Marepalli B. Rao,et al.  Chapter 3 – Graphics Miscellanea , 2014 .

[33]  N. Alonso-Morales,et al.  Oxidation Reactivity and Structure of LDPE-Derived Solid Carbons: A Temperature-Programmed Oxidation Study , 2013 .

[34]  S. Pati,et al.  Effect of Imide Functionalization on the Electronic, Optical, and Charge Transport Properties of Coronene: A Theoretical Study , 2013 .

[35]  M. Koshi,et al.  A novel route for PAH growth in HACA based mechanisms , 2012 .

[36]  Hai Wang Formation of nascent soot and other condensed-phase materials in flames , 2011 .

[37]  C. Hwang,et al.  Low-energy electronic states of carbon nanocones in an electric field , 2010 .

[38]  A. Indarto Soot Growth Mechanisms from Polyynes , 2009 .

[39]  H. Nijmeijer,et al.  The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames , 2009 .

[40]  J. H. Miller,et al.  Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters. , 2008, The journal of physical chemistry. A.

[41]  C. Bréchignac,et al.  Coronene cluster experiments: Stability and thermodynamics , 2006 .

[42]  Lawrence B Harding,et al.  Predictive theory for hydrogen atom-hydrocarbon radical association kinetics. , 2005, The journal of physical chemistry. A.

[43]  S. Matile,et al.  Synthetic ion channels with rigid-rod pi-stack architecture that open in response to charge-transfer complex formation. , 2005, Journal of the American Chemical Society.

[44]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[45]  K. Sattler,et al.  Clustering at high temperatures: carbon formation in combustion , 2002 .

[46]  P. Fowler,et al.  Structure, ring currents and magnetic properties of 12b, 12d, 12f-triaza-12c, 12e, 12g-tribora-coronene , 2002 .

[47]  Adel F. Sarofim,et al.  A reaction pathway for nanoparticle formation in rich premixed flames , 2001 .

[48]  O. Altin,et al.  Analysis of Solid Deposits from Thermal Stressing of a JP-8 Fuel on Different Tube Surfaces in a Flow Reactor , 2001 .

[49]  M. Arai,et al.  Control of soot emitted from acetylene diffusion flames by applying an electric field , 1999 .

[50]  M. Frenklach,et al.  A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames , 1997 .

[51]  T. Baum,et al.  Fullerene ions and their relation to PAH and soot in low-pressure hydrocarbon flames , 1992 .

[52]  M. Kono,et al.  Investigation on the effect of electric fields on soot formation and flame structure of diffusion flames , 1992 .

[53]  M. Frenklach,et al.  Detailed modeling of soot particle nucleation and growth , 1991 .

[54]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[55]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[56]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .