Spekkens ’ toy model in all dimensions and its relationship with stabiliser quantum mechanics
暂无分享,去创建一个
Iordanis Kerenidis | Victor Veitch | Daniel Gottesman | Christopher Ferrie | André Chailloux | Andrew J. P. Garner | Srijita Kundu | Oscar C O Dahlsten | Andrew J P Garner | D. Gottesman | Iordanis Kerenidis | O. Dahlsten | Victor Veitch | C. Ferrie | A. Chailloux | S A Hamed Mousavian | Srijita Kundu | S. Mousavian
[1] Nicolas Delfosse,et al. Contextuality as a resource for qubit quantum computation , 2015 .
[2] Stephen D. Bartlett,et al. Non-negative subtheories and quasiprobability representations of qubits , 2012, 1203.2652.
[3] Victor Veitch,et al. Contextuality Supplies the Magic for Quantum Computation , 2015, 2015 IEEE International Symposium on Multiple-Valued Logic.
[4] Bill Edwards,et al. Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.
[5] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[6] Jan-AAke Larsson. A contextual extension of Spekkens' toy model , 2012 .
[7] Necessity of negativity in quantum theory , 2009, 0910.3198.
[8] J. Emerson,et al. Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.
[9] R. Raussendorf,et al. Wigner Function Negativity and Contextuality in Quantum Computation on Rebits , 2014, 1409.5170.
[10] Nathan Wiebe,et al. Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.
[11] Victor Veitch,et al. The resource theory of stabilizer quantum computation , 2013, 1307.7171.
[12] N. Bohr. II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .
[14] Scott Aaronson,et al. Improved Simulation of Stabilizer Circuits , 2004, ArXiv.
[15] R. Raussendorf. Quantum computation, discreteness, and contextuality , 2009 .
[16] R. Spekkens. Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.