Inelastic behaviour and design of slender I-sections in minor axis bending

Abstract Slender steel sections in bending are generally designed by taking the maximum moment as the yield moment. The assumption for the ultimate condition is thus the point at which first yield is reached in the section. Certain types of slender sections, however, have shown significant post-elastic behaviour in attainment of the ultimate moment. Experiments on I-sections in minor axis bending have shown this to be the case, where significant plastic stress distributions are attained in the tension flanges after the compression flanges have locally buckled. Current international steel specifications are unduly conservative when estimating the bending strength of these sections as the yield moment. This paper quantifies this conservatism and presents inelastic design methods whereby the post-elastic strength may be captured. Design equations are proposed for Australian, American and European hot-rolled and cold-formed steel specifications.

[1]  A. Rusch,et al.  Remarks to the Direct Strength Method , 2001 .

[2]  Kim J.R. Rasmussen,et al.  Design Provisions for Sections Containing Unstiffened Elements with Stress Gradient , 2004 .

[3]  Gregory J. Hancock,et al.  Computer analysis of thin-walled structural members , 1995 .

[4]  Kim J.R. Rasmussen,et al.  Effects of anchoring tensile stresses in axially loaded plates and sections , 2004 .

[5]  Kim J.R. Rasmussen,et al.  Effective Widths of Unstiffened Elements with Stress Gradient , 2004 .

[6]  Archibald N. Sherbourne,et al.  Strength Predictions of Plates in Uniaxial Compression , 1972 .

[7]  N. W. Murray,et al.  Some basic plastic mechanisms in the local buckling of thin-walled steel structures , 1981 .

[8]  James Rhodes,et al.  Post-failure behaviour of box section beams under pure bending (an experimental study) , 2000 .

[9]  Xiao-Ling Zhao,et al.  Yield line mechanism analysis of steel members and connections , 2003 .

[10]  Gregory J. Hancock Development of the 2005 Edition of the Australian/New Zealand Standard for Cold-Formed Steel Structures AS/NZS 4600 , 2008 .

[11]  Viorel Ungureanu,et al.  Recent research advances on ECBL approach.: Part I: Plastic–elastic interactive buckling of cold-formed steel sections , 2004 .

[12]  Kim J.R. Rasmussen,et al.  Thin-Walled Beam-Columns. II: Proportional Loading Tests , 1999 .

[13]  Kim J.R. Rasmussen,et al.  Tests of Unstiffened Plate Elements Under Combined Compression and Bending , 2004 .

[14]  Miklós Iványi MOMENT-ROTATION CHARACTERISTICS OF LOCALLY BUCKLING BEAMS , 1979 .

[15]  Bettina Brune Wirksame Breiten für druck‐ und biegebeanspruchte Stahlbleche im plastischen Zustand , 1999 .

[16]  Dana Petcu,et al.  Ductility of Thin-Walled Members , 1999 .

[17]  Frank Fleer,et al.  Australian / New Zealand standards , 1996 .

[18]  Gregory J. Hancock,et al.  Cold-formed steel structures , 2003 .

[19]  Dušan Kecman,et al.  Bending collapse of rectangular and square section tubes , 1983 .

[20]  M. R. Bambach,et al.  Experimental techniques for testing unstiffened plates in compression and bending , 2004 .

[21]  Dieter Ungermann,et al.  Beultragfähigkeit von Stahlquerschnitten unter Druck‐ und Biegebeanspruchung , 2003 .