A Minimal Solution for Two-View Focal-Length Estimation Using Two Affine Correspondences

A minimal solution using two affine correspondences is presented to estimate the common focal length and the fundamental matrix between two semi-calibrated cameras – known intrinsic parameters except a common focal length. To the best of our knowledge, this problem is unsolved. The proposed approach extends point correspondence-based techniques with linear constraints derived from local affine transformations. The obtained multivariate polynomial system is efficiently solved by the hidden-variable technique. Observing the geometry of local affinities, we introduce novel conditions eliminating invalid roots. To select the best one out of the remaining candidates, a root selection technique is proposed outperforming the recent ones especially in case of high-level noise. The proposed 2-point algorithm is validated on both synthetic data and 104 publicly available real image pairs. A Matlab implementation of the proposed solution is included in the paper.

[1]  Zuzana Kukelova,et al.  Algebraic Methods in Computer Vision , 2013 .

[2]  Reinhard Koch,et al.  Differential Spatial Resection - Pose Estimation Using a Single Local Image Feature , 2008, ECCV.

[3]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[4]  Levente Hajder,et al.  Novel Ways to Estimate Homography from Local Affine Transformations , 2016, VISIGRAPP.

[5]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[6]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[7]  András Bódis-Szomorú,et al.  Fast, Approximate Piecewise-Planar Modeling Based on Sparse Structure-from-Motion and Superpixels , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[9]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[10]  Ariel Shamir,et al.  Mode-detection via median-shift , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[11]  Joseph M. Francos,et al.  Conic epipolar constraints from affine correspondences , 2014, Comput. Vis. Image Underst..

[12]  Frederik Schaffalitzky,et al.  A minimal solution for relative pose with unknown focal length , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[14]  Zuzana Kukelova,et al.  The Six Point Algorithm Revisited , 2010, ACCV Workshops.

[15]  Pascal Monasse,et al.  Global Fusion of Relative Motions for Robust, Accurate and Scalable Structure from Motion , 2013, ICCV.

[16]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[17]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[18]  Zuzana Kukelova,et al.  Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems , 2008, BMVC.

[19]  Jiri Matas,et al.  Epipolar Geometry from Two Correspondences , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[20]  Ákos Pernek,et al.  Automatic focal length estimation as an eigenvalue problem , 2013, Pattern Recognit. Lett..

[21]  Kevin Köser,et al.  Geometric estimation with local affine frames and free-form surfaces , 2009 .

[22]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[23]  Jiri Matas,et al.  Accurate Closed-form Estimation of Local Affine Transformations Consistent with the Epipolar Geometry , 2016, BMVC.

[24]  Zuzana Kukelova,et al.  Robust Focal Length Estimation by Voting in Multi-view Scene Reconstruction , 2009, ACCV.

[25]  Levente Hajder,et al.  Optimal Surface Normal from Affine Transformation , 2015, VISAPP.

[26]  R. Hartley,et al.  A Non-iterative Method for Correcting Lens Distortion from Nine Point Correspondences , 2005 .

[27]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[28]  Hongdong Li,et al.  An Efficient Hidden Variable Approach to Minimal-Case Camera Motion Estimation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Hongdong Li A Simple Solution to the Six-Point Two-View Focal-Length Problem , 2006, ECCV.

[30]  Kenneth Turkowski Transformations of surface normal vectors , 1990 .

[31]  Levente Hajder,et al.  Novel Methods for Estimating Surface Normals from Affine Transformations , 2015, VISIGRAPP.

[32]  Jan-Michael Frahm,et al.  Building Rome on a Cloudless Day , 2010, ECCV.

[33]  Carolina Raposo,et al.  Theory and Practice of Structure-From-Motion Using Affine Correspondences , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).