Physics of contact angle measurement

Abstract Contact angles can be of great value; however, making meaningful contact angle measurements and interpreting those measurements is complex. For years, researchers have addressed a wide variety of issues concerning contact angles. Some questions have been qualitatively answered; others remain open. In this paper, we focus on three issues which are particularly important for the measurement and use of contact angles: the appropriate definitions and use of macroscopic and microscopic contact angles, a brief survey of the length scales relevant to phenomena controlling contact angles, and the role of vibrations in determining contact angles. We emphasize contact angle issues relevant to heterogeneous surfaces, specifically, ambient surfaces prevalent in nature and industry.

[1]  Enrique Rame,et al.  On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation , 1991, Journal of Fluid Mechanics.

[2]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[3]  Wetting Hysteresis at the Molecular Scale , 1997 .

[4]  S. Garoff,et al.  The velocity field near moving contact lines , 1997, Journal of Fluid Mechanics.

[5]  A. Cazabat,et al.  How does a droplet spread , 1987 .

[6]  A. W. Neumann,et al.  Contact angles and their temperature dependence: thermodynamic status, measurement, interpretation and application , 1974 .

[7]  B. Darvell,et al.  A protocol for contact angle measurement , 1990 .

[8]  L. Schwartz,et al.  Contact angle hysteresis on heterogeneous surfaces , 1985 .

[9]  R. Good,et al.  Thermodynamics of contact angles. I. Heterogeneous solid surfaces , 1972 .

[10]  J. Israelachvili Intermolecular and surface forces , 1985 .

[11]  Jaroslaw Drelich,et al.  Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films , 1996 .

[12]  A. Marmur Line tension effect on contact angles: Axisymmetric and cylindrical systems with rough or heterogeneous solid surfaces , 1998 .

[13]  Abraham Marmur,et al.  CONTACT ANGLE HYSTERESIS ON HETEROGENEOUS SMOOTH SURFACES , 1994 .

[14]  L. Schwartz,et al.  Hysteretic Effects in Droplet Motions on Heterogeneous Substrates: Direct Numerical Simulation , 1998 .

[15]  D. K. Schwartz,et al.  Dewetting Modes of Surfactant Solution as a Function of the Spreading Coefficient , 1997 .

[16]  F. Heslot,et al.  The Spreading of Layered Microdroplets , 1993 .

[17]  C. Knobler,et al.  Growth of breath figures. , 1986, Physical review letters.

[18]  A. Marmur,et al.  THE SPREADING OF AQUEOUS SURFACTANT SOLUTIONS ON GLASS , 1981 .

[19]  Tennyson Smith,et al.  Effect of acoustic energy on contact angle measurements , 1978 .

[20]  A. Neumann,et al.  Thermodynamics of contact angles. II. Rough solid surfaces , 1975 .

[21]  R. Good,et al.  A Thermodynamic Derivation of Wenzel's Modification of Young's Equation for Contact Angles; Together with a Theory of Hysteresis1 , 1952 .

[22]  S. Garoff,et al.  Contact Line Structure and Dynamics on Surfaces with Contact Angle Hysteresis , 1997 .

[23]  George M. Whitesides,et al.  Molecular Self-Assembly of Aliphatic Thiols on Gold Colloids , 1996 .

[24]  F. M. Hosking,et al.  The Mechanics of Solder Alloy Wetting and Spreading , 1993 .

[25]  D. K. Schwartz,et al.  Self-assembled monolayer growth of octadecylphosphonic acid on mica , 1996 .

[26]  A. Adamson Physical chemistry of surfaces , 1960 .

[27]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[28]  Wetting, spreading and adhesion , 1979 .

[29]  Y. P. Joshi Shape of a liquid surface in contact with a solid , 1990 .

[30]  Dongqing Li,et al.  Surface heterogeneity and contact angle hysteresis , 1992 .

[31]  J. Israelachvili,et al.  Molecular mechanisms and kinetics during the self-assembly of surfactant layers , 1992 .

[32]  S. Garoff,et al.  Using Vibrational Noise To Probe Energy Barriers Producing Contact Angle Hysteresis , 1996 .

[33]  D. Allara,et al.  Wetting-Induced Reconstruction in Molecular Surfaces , 1997 .

[34]  S. Garoff,et al.  Origins of the complex motion of advancing surfactant solutions , 1995 .

[35]  C. Sykes,et al.  Average spreading parameter on heterogeneous surfaces , 1994 .

[36]  Garoff,et al.  Microscopic and Macroscopic Dynamic Interface Shapes and the Interpretation of Dynamic Contact Angles. , 1996, Journal of colloid and interface science.

[37]  A. Cazabat,et al.  Dynamics of wetting on smooth and rough surfaces , 1987 .

[38]  L. E. Scriven,et al.  Shapes of axisymmetric fluid interfaces of unbounded extent , 1969 .

[39]  S. Garoff,et al.  Temporal and spatial development of surfactant self-assemblies controlling spreading of surfactant solutions , 1995 .

[40]  S. Garoff,et al.  Reproducibility of Contact Line Motion on Surfaces Exhibiting Contact Angle Hysteresis , 1994 .

[41]  W. Gelbart,et al.  Interplay between Hole Instability and Nanoparticle Array Formation in Ultrathin Liquid Films , 1998 .

[42]  Extrand,et al.  Contact Angles and Hysteresis on Soft Surfaces , 1996, Journal of colloid and interface science.

[43]  M. Sharma,et al.  Characterization of Adsorbed Ionic Surfactants on a Mica Substrate , 1996 .

[44]  K. P. Leung,et al.  Surface-enhanced Raman study of the solid/liquid interface: Conformational changes in adsorbed molecules , 1983 .

[45]  S. Garoff,et al.  An Investigation of Microscopic Aspects of Contact Angle Hysteresis: Pinning of the Contact Line on a Single Defect , 1992 .

[46]  L. Schwartz,et al.  Contact angle hysteresis and the shape of the three-phase line , 1985 .

[47]  C. Knobler,et al.  Computer simulations of the growth of breath figures , 1988 .

[48]  A. D. Young,et al.  An Introduction to Fluid Mechanics , 1968 .

[49]  S. Garoff,et al.  Contact Angle Hysteresis: The Need for New Theoretical and Experimental Models , 1997 .