Global Stabilization of Planar Systems with Input Delay and Saturation

This chapter investigates the problem of global stabilization of planar linear systems with both actuator saturation and delay. For a double integrator system, two families of TPF-based linear feedback solutions to the problem are proposed. Both of these families of solutions are parameterized in a single-parameter γ. The first solution is delay dependent in the sense that the delay information is explicitly used in the controller design, while the second solution is delay independent as the delay information is not directly used in the feedback. For an oscillator system, we also propose a delay-dependent TPF-based controller. Explicit ranges of the value of γ for all the three cases are provided to guarantee the global stability of the closed-loop system.

[1]  J. How,et al.  Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits , 2000 .

[2]  K. Gu An integral inequality in the stability problem of time-delay systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  ENRICO PRIOLA,et al.  Null Controllability with Vanishing Energy , 2003, SIAM J. Control. Optim..

[4]  Thomas Carter,et al.  Optimal power-limited rendezvous with thrust saturation , 1995 .

[5]  Guang-Ren Duan,et al.  On improving transient performance in global control of multiple integrators system by bounded feedback , 2008, Syst. Control. Lett..

[6]  Z. Artstein Linear systems with delayed controls: A reduction , 1982 .

[7]  Brian P. Mann,et al.  Stability Analysis and Control of Linear Periodic Delayed Systems Using Chebyshev and Temporal Finite Element Methods , 2009 .

[8]  Dirk Aeyels,et al.  Pole assignment for linear time-invariant systems by periodic memoryless output feedback , 1992, Autom..

[9]  Jesus Leyva-Ramos,et al.  Output feedback stabilizing controller for time-delay systems , 2000, Autom..

[10]  Bin Zhou,et al.  Observer based output feedback control of linear systems with multiple input and output delays , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[11]  B.P. Molinari,et al.  The time-invariant linear-quadratic optimal control problem , 1977, Autom..

[12]  Sabine Mondié,et al.  Global asymptotic stabilization of feedforward systems with delay in the input , 2004, IEEE Transactions on Automatic Control.

[13]  Joaquín Collado,et al.  Semi-global stabilization of discrete-time systems with bounded inputs using a periodic controller , 1999 .

[14]  Shengyuan Xu,et al.  Delay-Dependent $H_{\infty }$ Control and Filtering for Uncertain Markovian Jump Systems With Time-Varying Delays , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Miroslav Krstic,et al.  Stabilization of linear strict-feedback systems with delayed integrators , 2010, Proceedings of the 2010 American Control Conference.

[16]  M. Krstić Compensation of Infinite-Dimensional Actuator and Sensor Dynamics , 2010, IEEE Control Systems.

[17]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[18]  Zongli Lin,et al.  Sampled-data periodic predictor feedback for linear systems with input delay , 2013, Proceedings of the 32nd Chinese Control Conference.

[19]  Jianqiao Sun,et al.  A note on the stability of linear dynamical systems with time delay , 2014 .

[20]  Leonid M. Fridman,et al.  Robust Semiglobal Stabilization of the Second Order System by Relay Feedback with an Uncertain Variable Time Delay , 2008, SIAM J. Control. Optim..

[21]  Masami Ito,et al.  An observer for linear feedback control laws of multivariable systems with multiple delays in controls and outputs , 1981 .

[22]  Bin Zhou,et al.  Parametric Pole Assignment and Robust Pole Assignment for Discrete-Time Linear Periodic Systems , 2010, SIAM J. Control. Optim..

[23]  S. Ruan,et al.  On the zeros of transcendental functions with applications to stability of delay differential equations with two delays , 2003 .

[24]  Hitay Özbay,et al.  Robust Control of Infinite Dimensional Systems: Frequency Domain Methods , 1996 .

[25]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[26]  Bin Zhou,et al.  Analysis and design of discrete-time linear systems with nested actuator saturations , 2013, Syst. Control. Lett..

[27]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[28]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[29]  Miroslav Krstic,et al.  Lyapunov-Krasovskii functionals and application to input delay compensation for linear time-invariant systems , 2012, Autom..

[30]  A. Teel Global stabilization and restricted tracking for multiple integrators with bounded controls , 1992 .

[31]  Miroslav Krstic,et al.  Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch , 2008, 2008 American Control Conference.

[32]  Bin Zhou,et al.  Truncated predictor feedback for periodic linear systems with input delays with applications to the elliptical spacecraft rendezvous , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[33]  Bernhard P. Lampe,et al.  Stability investigation for linear periodic time-delayed systems using Fredholm theory , 2011 .

[34]  Wei Xing Zheng,et al.  Delay-dependent robust stabilization for uncertain neutral systems with distributed delays , 2007, Autom..

[35]  David Zhang,et al.  An innovation approach to Hinfinity prediction for continuous-time systems with application to systems with delayed measurements , 2004, Autom..

[36]  U. Shaked,et al.  Stability and guaranteed cost control of uncertain discrete delay systems , 2005 .

[37]  H. Antosiewicz,et al.  Differential Equations: Stability, Oscillations, Time Lags , 1967 .

[38]  João Pedro Hespanha,et al.  Linear Systems Theory , 2009 .

[39]  Wenwu Yu,et al.  Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities , 2010, Syst. Control. Lett..

[40]  Cheng-Lin Liu,et al.  Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations , 2009, Autom..

[41]  Hong Wang,et al.  Stabilization of a PVTOL Aircraft and an Inertia Wheel Pendulum Using Saturation Technique , 2007, IEEE Transactions on Control Systems Technology.

[42]  Guang-Ren Duan,et al.  $L_{\infty}$ and $L_{2}$ Low-Gain Feedback: Their Properties, Characterizations and Applications in Constrained Control , 2011, IEEE Transactions on Automatic Control.

[43]  Lihua Xie,et al.  Network Topology and Communication Data Rate for Consensusability of Discrete-Time Multi-Agent Systems , 2011, IEEE Transactions on Automatic Control.

[44]  Guang-Ren Duan,et al.  L ∞ and L 2 semi-global stabilisation of continuous-time periodic linear systems with bounded controls , 2013, Int. J. Control.

[45]  Wim Michiels,et al.  Stability of Perturbed Delay Differential Equations and Stabilization of Nonlinear Cascade Systems , 2001, SIAM J. Control. Optim..

[46]  Hyungbo Shim,et al.  Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach , 2009, Autom..

[47]  Jie Chen,et al.  Frequency sweeping tests for stability independent of delay , 1995, IEEE Trans. Autom. Control..

[48]  S. Cong On exponential stability conditions of linear neutral stochastic differential systems with time‐varying delay , 2013 .

[49]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[50]  Vladimír Kucera,et al.  A review of the matrix Riccati equation , 1973, Kybernetika.

[51]  Sabine Mondié,et al.  Global stabilization of oscillators with bounded delayed input , 2004, Syst. Control. Lett..

[52]  Guang-Ren Duan,et al.  Approximation and Monotonicity of the Maximal Invariant Ellipsoid for Discrete-Time Systems by Bounded Controls , 2010, IEEE Transactions on Automatic Control.

[53]  Zongli Lin,et al.  A further result on global stabilization of oscillators with bounded delayed input , 2005, Proceedings of the 2005, American Control Conference, 2005..

[54]  Huijun Gao,et al.  Stability analysis for continuous systems with two additive time-varying delay components , 2007, Syst. Control. Lett..

[55]  Bin Zhou,et al.  Discrete-time l∞ and l2 norm vanishment and low gain feedback with their applications in constrained control , 2012, 2012 24th Chinese Control and Decision Conference (CCDC).

[56]  Lin Lin On Asymptotic Stabilizability of Discrete-time Linear Systems with Delayed Input , 2007, Commun. Inf. Syst..

[57]  Guang-Ren Duan,et al.  A parametric Lyapunov equation approach to low gain feedback design for discrete-time systems , 2009, Autom..

[58]  IASSON KARAFYLLIS Stabilization by Means of Approximate Predictors for Systems with Delayed Input , 2011, SIAM J. Control. Optim..

[59]  Ming-Po Chen,et al.  A new Razumikhin theorem for delay difference equations , 1998 .

[60]  Gregor Goebel,et al.  Stabilization of linear systems with distributed input delay , 2010, Proceedings of the 2010 American Control Conference.

[61]  V. Van Assche,et al.  Some problems arising in the implementation of distributed-delay control laws , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[62]  C. Nett,et al.  A new method for computing delay margins for stability of linear delay systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[63]  Guang-Ren Duan,et al.  Stabilization of a Class of Linear Systems With Input Delay and the Zero Distribution of Their Characteristic Equations , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[64]  A. Olbrot Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays , 1978 .

[65]  G. Duan,et al.  Circular orbital rendezvous with actuator saturation and delay: A parametric Lyapunov equation approach , 2012 .

[66]  Guang-Ren Duan,et al.  Stabilization of linear systems with distributed input delay and input saturation , 2012, Autom..

[67]  Bin Zhou,et al.  Stabilization of Discrete-Time Systems With Multiple Actuator Delays and Saturations , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[68]  A. Olbrot,et al.  Finite spectrum assignment problem for systems with delays , 1979 .

[69]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[70]  Yongcan Cao,et al.  Distributed Coordination of Multi-agent Networks , 2011 .

[71]  J. Hale Theory of Functional Differential Equations , 1977 .

[72]  Leonid Mirkin,et al.  On the approximation of distributed-delay control laws , 2004, Syst. Control. Lett..

[73]  Yeong-Jeu Sun,et al.  Global stabilizability of uncertain systems with time-varying delays via dynamic observer-based output feedback , 2002 .

[74]  Balakumar Balachandran,et al.  Systems with Periodic Coefficients and Periodically Varying Delays: Semidiscretization-Based Stability Analysis , 2009 .

[75]  K. Gu,et al.  Advances in Time-Delay Systems , 2009 .

[76]  Bin Zhou,et al.  On higher-order truncated predictor feedback for linear systems with input delay , 2012, Proceedings of the 31st Chinese Control Conference.

[77]  Guang-Ren Duan,et al.  On Analytical Approximation of the Maximal Invariant Ellipsoids for Linear Systems With Bounded Controls , 2009, IEEE Transactions on Automatic Control.

[78]  Akira Ichikawa,et al.  Graphical generation of periodic orbits of tschauner-hempel equations , 2012 .

[79]  Wim Michiels,et al.  Finite spectrum assignment of unstable time-delay systems with a safe implementation , 2003, IEEE Trans. Autom. Control..

[80]  Eduardo Sontag An algebraic approach to bounded controllability of linear systems , 1984 .

[81]  Guang-Ren Duan,et al.  Stabilization of some linear systems with both state and input delays , 2012, Syst. Control. Lett..

[82]  Luca Zaccarian,et al.  L2 anti-windup for linear dead-time systems , 2005, Syst. Control. Lett..

[83]  Zongli Lin,et al.  Lyapunov Differential Equation Approach to Elliptical Orbital Rendezvous with Constrained Controls , 2011 .

[84]  Jian-Qiao Sun,et al.  Stability and Optimal Feedback Controls for Time-Delayed Linear Periodic Systems , 2004 .

[85]  Erik I. Verriest,et al.  Stability of Systems with Distributed Delays , 1995 .

[86]  Thomas Kailath,et al.  Linear Systems , 1980 .

[87]  Shengyuan Xu,et al.  A survey of linear matrix inequality techniques in stability analysis of delay systems , 2008, Int. J. Syst. Sci..

[88]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[89]  Wei Ren,et al.  Formation Keeping and Attitude Alignment for Multiple Spacecraft Through Local Interactions , 2007 .

[90]  B. Mann,et al.  Stability of a Time-Delayed System With Parametric Excitation , 2007 .

[91]  T. Carter State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example , 1998 .

[92]  Alexey P. Zhabko,et al.  ROBUST STABILITY ANALYSIS OF LINEAR PERIODIC SYSTEMS WITH TIME DELAY , 2009 .

[93]  Tianping Chen,et al.  Consensus of Multi-Agent Systems With Unbounded Time-Varying Delays , 2010, IEEE Transactions on Automatic Control.

[94]  Zongli Lin,et al.  Discrete-time l ∞ and l 2 norm vanishment and low gain feedback with their applications in constrained control , 2012, CCDC 2012.

[95]  A. Ichikawa,et al.  Orbital Rendezvous and Flyaround Based on Null Controllability with Vanishing Energy , 2007 .

[96]  LI Yong-li,et al.  Sums of a Class of Power Series , 2011 .

[97]  Tamás Kalmár-Nagy,et al.  Delay differential equations : recent advances and new directions , 2009 .

[98]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[99]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[100]  Peilin Fu,et al.  An Eigenvalue Perturbation Approach to Stability Analysis, Part I: Eigenvalue Series of Matrix Operators , 2010, SIAM J. Control. Optim..

[101]  Lin Huang,et al.  Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[102]  Junping Du,et al.  Distributed Consensus Control for Second-Order Agents with Fixed Topology and Time-Delay , 2006, 2007 Chinese Control Conference.

[103]  Jong-Tae Lim,et al.  Output Feedback Regulation of a Chain of Integrators With an Unknown Time-Varying Delay in the Input , 2010, IEEE Transactions on Automatic Control.

[104]  Nejat Olgaç,et al.  An Exact Method for the Stability Analysis of Linear Consensus Protocols With Time Delay , 2011, IEEE Transactions on Automatic Control.

[105]  Yu-Ping Tian,et al.  Brief paper: High-order consensus of heterogeneous multi-agent systems with unknown communication delays , 2012 .

[106]  Shengyuan Xu,et al.  Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay , 2001, Syst. Control. Lett..

[107]  Sabine Mondié,et al.  Global asymptotic stabilization for chains of integrators with a delay in the input , 2003, IEEE Trans. Autom. Control..

[108]  A. Teel Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem , 1998, IEEE Trans. Autom. Control..

[109]  Delphine Bresch-Pietri,et al.  Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay $ $ , 2010, IEEE Transactions on Automatic Control.

[110]  James Lam,et al.  Global stabilization and restricted tracking with bounded feedback for multiple oscillator systems , 2010, Syst. Control. Lett..

[111]  Dennis S. Bernstein,et al.  Global stabilization of systems containing a double integrator using a saturated linear controller , 1999 .

[112]  Guang-Ren Duan,et al.  Truncated predictor feedback for linear systems with long time-varying input delays , 2012, Autom..

[113]  G. Duan,et al.  Output feedback elliptical orbital rendezvous via state-dependent Riccati differential equations , 2013 .

[114]  Jinhu Lu,et al.  On some recent advances in synchronization and control of Complex Networks , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[115]  Yacine Chitour,et al.  Linear Systems Subject to Input Saturation and Time Delay: Global Asymptotic Stabilization , 2007, IEEE Transactions on Automatic Control.

[116]  Bin Zhou,et al.  Truncated Predictor Feedback Stabilization of Polynomially Unstable Linear Systems With Multiple Time-Varying Input Delays , 2014, IEEE Transactions on Automatic Control.

[117]  Yiguang Hong,et al.  Distributed Observers Design for Leader-Following Control of Multi-Agent Networks (Extended Version) , 2017, 1801.00258.

[118]  Kun Liu,et al.  New conditions for delay-derivative-dependent stability , 2009, Autom..

[119]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[120]  Iasson Karafyllis,et al.  Predictor-Based Output Feedback for Nonlinear Delay Systems , 2011, ArXiv.

[121]  Horacio J. Marquez,et al.  Razumikhin-type stability theorems for discrete delay systems , 2007, Autom..

[122]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[123]  Sophie Tarbouriech,et al.  Synthesis of controllers for continuous-time delay systems with saturating controls via LMIs , 2000, IEEE Trans. Autom. Control..

[124]  Frank Allgöwer,et al.  Delay Robustness in Non-Identical Multi-Agent Systems , 2012, IEEE Transactions on Automatic Control.

[125]  R. Goldberg Methods of Real Analysis , 1964 .

[126]  Wim Michiels,et al.  Asymptotic stability of some distributed delay systems: an algebraic approach , 2006 .

[127]  Bin Zhou,et al.  Observer based output feedback control of linear systems with input and output delays , 2013, Autom..

[128]  Craig A. Kluever,et al.  Feedback Control for Spacecraft Rendezvous and Docking , 1999 .

[129]  Frank Allgöwer,et al.  Consensus in Multi-Agent Systems With Coupling Delays and Switching Topology , 2011, IEEE Transactions on Automatic Control.

[130]  Qing-Chang Zhong,et al.  On distributed delay in linear control Laws-part I: discrete-delay implementations , 2004, IEEE Transactions on Automatic Control.

[131]  Zongli Lin,et al.  Stabilization of linear systems with input delay and saturation—A parametric Lyapunov equation approach , 2010 .

[132]  Bin Zhou,et al.  Consensus of delayed multi-agent systems by reduced-order observer based truncated predictor feedback protocols , 2014, Proceedings of the 33rd Chinese Control Conference.

[133]  Qing-Guo Wang,et al.  Delay-range-dependent stability for systems with time-varying delay , 2007, Autom..

[134]  Keqin Gu,et al.  An improved stability criterion for systems with distributed delays , 2003 .

[135]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[136]  Wim Michiels,et al.  Continuous pole placement for delay equations , 2002, Autom..

[137]  Guoxiang Gu,et al.  On the Stability Testing of Time Delay Systems , 1988, 1988 American Control Conference.

[138]  N. Macdonald Time lags in biological models , 1978 .

[139]  Qing-Long Han,et al.  Absolute stability of time-delay systems with sector-bounded nonlinearity , 2005, Autom..

[140]  Alessandro Antonio Quarta,et al.  Fuel-optimal, power-limited rendezvous with variable thruster efficiency , 2005 .

[141]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[142]  Guang-Ren Duan,et al.  Distributed and Truncated Reduced-Order Observer Based Output Feedback Consensus of Multi-Agent Systems , 2014, IEEE Transactions on Automatic Control.

[143]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[144]  S. Bittanti,et al.  Periodic Systems: Filtering and Control , 2008 .

[145]  Guang-Ren Duan,et al.  A truncated prediction approach to stabilization of linear systems with long time-varying input delay , 2011, IEEE Conference on Decision and Control and European Control Conference.

[146]  Guang-Ren Duan,et al.  A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation , 2010, Proceedings of the 2010 American Control Conference.

[147]  Bor-Sen Chen,et al.  Stabilization of time-delay systems containing saturating actuators , 1988 .

[148]  Thomas Carter,et al.  Optimal Power-Limited Rendezvous with Upper and Lower Bounds on Thrust , 1996 .

[149]  Mrdjan Jankovic,et al.  Forwarding, backstepping, and finite spectrum assignment for time delay systems , 2007, 2007 American Control Conference.

[150]  H. Koivo,et al.  An observer theory for time delay systems , 1976 .

[151]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[152]  Ali Saberi,et al.  Consensus in the network with uniform constant communication delay , 2013, Autom..

[153]  Keqin Gu,et al.  A Review of Some Subtleties of Practical Relevance , 2012 .

[154]  Catherine Bonnet,et al.  Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics , 2008, 2008 47th IEEE Conference on Decision and Control.

[155]  Guang-Ren Duan,et al.  Properties of the parametric Lyapunov equation based low gain design with applications in stabilization of time-delay systems , 2009, 2009 American Control Conference.

[156]  Eduardo Sontag,et al.  A general result on the stabilization of linear systems using bounded controls , 1994, IEEE Trans. Autom. Control..

[157]  James Lam,et al.  Semi-global stabilization of linear time-delay systems with control energy constraint , 2012, Autom..

[158]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[159]  A. Luo,et al.  Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients , 2001 .

[160]  A. Kojima,et al.  Robust stabilization of a system with delays in control , 1994, IEEE Trans. Autom. Control..

[161]  Guang-Ren Duan,et al.  Global Stabilization of the Double Integrator System With Saturation and Delay in the Input , 2010 .

[162]  Michael E. Polites,et al.  An Assessment of the Technology of Automated Rendezvous and Capture in Space , 1998 .

[163]  Nicolas Marchand,et al.  Global stabilization of multiple integrators with bounded controls , 2005, Autom..

[164]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[165]  N. K. Son,et al.  Linear periodic control systems: Controllability with restrained controls , 1986 .

[166]  James Lam,et al.  Full delayed state feedback pole assignment of discrete-time time-delay systems , 2010 .

[167]  Bin Zhou,et al.  Consensus of high-order multi-agent systems with large input and communication delays , 2014, at - Automatisierungstechnik.

[168]  Dennis S. Bernstein,et al.  Naive control of the double integrator , 2001 .

[169]  Guang-Ren Duan,et al.  A Parametric Lyapunov Equation Approach to the Design of Low Gain Feedback , 2008, IEEE Transactions on Automatic Control.

[170]  F.Y. Hadaegh,et al.  A survey of spacecraft formation flying guidance and control. Part II: control , 2004, Proceedings of the 2004 American Control Conference.

[171]  M. Krstic Lyapunov Stability of Linear Predictor Feedback for Time-Varying Input Delay , 2010, IEEE Trans. Autom. Control..

[172]  Haitao Ma,et al.  Stability of linear time‐periodic delay‐differential equations via Chebyshev polynomials , 2004 .

[173]  B. Anderson,et al.  NEW RESULTS IN LINEAR SYSTEM STABILITY , 1969 .

[174]  J. Klamka Observer for linear feedback control of systems with distributed delays in controls and outputs , 1982 .

[175]  Emilia Fridman,et al.  Regional stabilization and H∞ control of time‐delay systems with saturating actuators , 2003 .

[176]  Guang-Ren Duan,et al.  Periodic Lyapunov Equation Based Approaches to the Stabilization of Continuous-Time Periodic Linear Systems , 2012, IEEE Transactions on Automatic Control.

[177]  Guang-Ren Duan,et al.  Stabilisation of time-varying linear systems via Lyapunov differential equations , 2013, Int. J. Control.

[178]  Akira Ichikawa Null controllability with vanishing energy for discrete-time systems , 2008, Syst. Control. Lett..

[179]  Alessandro Astolfi,et al.  Nonlinear control of feedforward systems with bounded signals , 2004, IEEE Transactions on Automatic Control.

[180]  V. Karanam,et al.  Eigenvalue bounds for algebraic Riccati and Lyapunov equations , 1982 .

[181]  C. Karlgaard Robust Rendezvous Navigation in Elliptical Orbit , 2006 .

[182]  Nikolaos Bekiaris-Liberis,et al.  Delay-adaptive feedback for linear feedforward systems , 2010, ACC 2010.

[183]  M. Guelman,et al.  Optimal Bounded Low-Thrust Rendezvous with Fixed Terminal-Approach Direction , 2001 .

[184]  Miroslav Krstic,et al.  Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays , 2011, IEEE Trans. Autom. Control..

[185]  Eduardo Sontag,et al.  On Finite-Gain Stabilizability of Linear Systems Subject to Input Saturation , 1996 .

[186]  Gábor Stépán,et al.  Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications , 2011 .

[187]  Keyou You,et al.  Coordination of discrete‐time multi‐agent systems via relative output feedback , 2011 .

[188]  Hongye Su,et al.  On stability and stabilisation for uncertain stochastic systems with time-delay and actuator saturation , 2010, Int. J. Syst. Sci..

[189]  A. Varga On solving periodic differential matrix equations with applications to periodic system norms computation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[190]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[191]  Wim Michiels Stability and stabilization of time-delay systems , 2002 .

[192]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[193]  E. Shimemura,et al.  Stabilizability conditions by memory less feedback for linear systems with time-delay , 1983 .

[194]  Zongli Lin,et al.  Semi-global Exponential Stabilization of Linear Systems Subject to \input Saturation" via Linear Feedbacks , 1993 .

[195]  J. Klamka Absolute controllability of linear systems with time-variable delays in control , 1977 .

[196]  Sergio Salazar,et al.  Discrete-time stabilization of integrators in cascade: Real-time stabilization of a mini-rotorcraft , 2006, CDC.

[197]  V. Kharitonov,et al.  On delay-dependent stability conditions ☆ , 2000 .

[198]  Wenwu Yu,et al.  Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems , 2010, Autom..

[199]  Bin Zhou,et al.  Input delay compensation of linear systems with both state and input delays by nested prediction , 2014, Autom..

[200]  Guang-Ren Duan,et al.  Optimal pole assignment for discrete-time systems via Stein equations , 2009 .

[201]  Wim Michiels,et al.  Global stabilization of multiple integrators with time-delay and input constraints , 2001 .

[202]  Guang-Ren Duan,et al.  Global and Semi-Global Stabilization of Linear Systems With Multiple Delays and Saturations in the Input , 2010, SIAM J. Control. Optim..

[203]  Jie Huang,et al.  Stability of a Class of Linear Switching Systems with Applications to Two Consensus Problems , 2011, IEEE Transactions on Automatic Control.

[204]  Yacine Chitour,et al.  Linear Systems Subject to Input Saturation and Time Delay: Finite-Gain $L{\lowercasep}$-Stabilization , 2006, SIAM J. Control. Optim..

[205]  Jin-Hua She,et al.  New delay-dependent stability criteria and stabilizing method for neutral systems , 2004, IEEE Trans. Autom. Control..

[206]  Tingshu Hu,et al.  Stability analysis of linear time-delay systems subject to input saturation , 2002 .

[207]  Benoit Boulet,et al.  Robust output feedback stabilization of uncertain time-varying state-delayed systems with saturating actuators , 2004 .

[208]  Wim Michiels,et al.  Characterization of Delay-Independent Stability and Delay Interference Phenomena , 2007, SIAM J. Control. Optim..

[209]  Lin Huang,et al.  Stability analysis and decentralized control of a class of complex dynamical networks , 2008, Autom..

[210]  A. Olbrot On controllability of linear systems with time delays in control , 1972 .

[211]  El Houssaine Tissir,et al.  An LMI-based approach for robust stabilization of time delay systems containing saturating actuators , 2006, IMA J. Math. Control. Inf..

[212]  Zongli Lin,et al.  On Asymptotic Stabilizability of Linear Systems With Delayed Input , 2006, IEEE Transactions on Automatic Control.

[213]  Bin Zhou,et al.  Observer-based output feedback control of discrete-time linear systems with input and output delays , 2014, Int. J. Control.

[214]  Eduardo Sontag,et al.  Global stabilization of linear discrete-time systems with bounded feedback , 1997 .

[215]  Bin Zhou,et al.  Parametric Lyapunov Equation Approach to Stabilization of Discrete-Time Systems With Input Delay and Saturation , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.