Systematic study of the ferroelectric properties of Pb(Zr0.5Ti0.5)O3 nanowires

The ferroelectric properties of Pb(Zr0.5Ti0.5)O3 (PZT) nanowires are investigated using Landau–Ginzburg–Devonshire theory, taking account into the nanowire size, polarization gradient, temperature, and axis stress. It is shown that the Curie temperature, coercive electric field, remnant polarization, dielectric permittivity, and piezoelectric coefficient are all size dependent. It is revealed that the ferroelectric properties disappear below a critical diameter, which depends on the temperature, but they can be recovered under an appropriate axis tension. Our results further show that an unusual thermal fluctuation exists in PZT nanowires with small diameter.

[1]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[2]  Daining Fang,et al.  Size-dependent ferroelectric behaviors of BaTiO3 nanowires , 2008 .

[3]  James F. Scott,et al.  Morphological Control of Polar Orientation in Single-Crystal Ferroelectric Nanowires , 2007 .

[4]  J. Scott,et al.  Strain-gradient-induced polarization in SrTiO3 single crystals. , 2007, Physical review letters.

[5]  Min-Feng Yu,et al.  One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire , 2006 .

[6]  Anna N. Morozovska,et al.  Ferroelectricity enhancement in confined nanorods: Direct variational method , 2006 .

[7]  Sang Yeol Lee,et al.  Comparison of the effect of PLT and PZT buffer layers on PZT thin films for ferroelectric materials applications , 2006 .

[8]  Hongkun Park,et al.  Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.

[9]  I. Naumov,et al.  Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires. , 2005, Physical review letters.

[10]  Jian-ming Hong,et al.  Synthesis and characterization of single-crystal PbTiO3 nanorods , 2005 .

[11]  J. Junquera,et al.  Finite-size effects in BaTiO3 nanowires , 2005, cond-mat/0503362.

[12]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[13]  J. Gregg,et al.  Strain gradients in epitaxial ferroelectrics , 2004, cond-mat/0411471.

[14]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[15]  Hongkun Park,et al.  Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy , 2002 .

[16]  B. Noheda Structure and high-piezoelectricity in lead oxide solid solutions , 2002 .

[17]  E. R. Fisher,et al.  Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes , 2002 .

[18]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[19]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[20]  Jianfeng Yuan,et al.  Color Filters with Negative Birefringence for Liquid Crystal Display Use , 1997 .

[21]  L. E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations , 1989 .

[22]  Leslie E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients , 1989 .

[23]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[24]  Kurt Binder,et al.  Surface effects on phase transitions in ferroelectrics and dipolar magnets , 1979 .

[25]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[26]  Susan Trolier-McKinstry,et al.  The Properties of Ferroelectric Films at Small Dimensions , 2000 .