PROBING THE INNERMOST REGIONS OF AGN JETS AND THEIR MAGNETIC FIELDS WITH RADIOASTRON. I. IMAGING BL LACERTAE AT 21 μas RESOLUTION

This research has been supported by the Spanish Ministry of Economy and Competitiveness grant AYA2013-40825-P, by the Russian Foundation for Basic Research (projects 13-02-12103, 14-02-31789, and 15-02-00949), and St. Petersburg University research grant 6.38.335.2015. The research at Boston University (BU) was funded in part by NASA Fermi Guest Investigator grant NNX14AQ58G. Y.M. acknowledges support from the ERC Synergy Grant >BlackHoleCam-Imaging the Event Horizon of Black Holes> (Grant 610058). Part of this work was supported by the COST Action MP1104 >Polarization as a tool to study the Solar System and beyond.> The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries.

[1]  Paul S. Smith,et al.  Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior , 2007, 0705.4273.

[2]  J. A. Zensus,et al.  “RadioAstron”-A telescope with a size of 300 000 km: Main parameters and first observational results , 2013, 1303.5013.

[3]  P. Hardee,et al.  THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY WITH A SUB-ALFVÉNIC JET: TEMPORAL PROPERTIES , 2011, 1104.0549.

[4]  M. Lister,et al.  Observational evidence for the accretion-disk origin for a radio jet in an active galaxy , 2002, Nature.

[5]  Paul S. Smith,et al.  Discovery of a precessing jet nozzle in BL Lacertae , 2003 .

[6]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[7]  G. Benford,et al.  Coherent synchrotron emission observed: implications for radio astronomy , 2000 .

[8]  S. Croke,et al.  Aligning VLBI images of active galactic nuclei at different frequencies , 2008, 0809.3313.

[9]  J. Anderson,et al.  RadioAstron space VLBI imaging of polarized radio emission in the high-redshift quasar 0642+449 at 1.6 GHz , 2015, 1504.04273.

[10]  I. Pashchenko,et al.  First estimate of the value of the instrumental polarization of the RadioAstron space radio telescope using the results of an early scientific program for observing active galactic nuclei , 2015 .

[11]  A Magnetohydrodynamic Boost for Relativistic Jets , 2008 .

[12]  R. Laing,et al.  Magnetic fields in extragalactic radio sources. , 1980 .

[13]  A. Lobanov,et al.  A Cosmic Double Helix in the Archetypical Quasar 3C273 , 2001, Science.

[14]  M. Lister,et al.  Evidence for a large-scale helical magnetic field in the quasar 3C 454.3 , 2013 .

[15]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS , 2012, 1205.6746.

[16]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[17]  Anthony C. S. Readhead,et al.  Equipartition brightness temperature and the inverse Compton catastrophe , 1994 .

[18]  M. Cohen,et al.  STUDIES OF THE JET IN BL LACERTAE. II. SUPERLUMINAL ALFVÉN WAVES , 2014, 1409.3599.

[19]  Y. Kovalev,et al.  Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources , 2015, 1507.02459.

[20]  Y. Kovalev,et al.  The RadioAstron project: Measurements and analysis of basic parameters of space telescope in flight in 2011–2013 , 2014 .

[21]  K. I. Kellermann,et al.  MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI , 2013, 1308.2713.

[22]  N. University,et al.  A View through Faraday’s Fog: Parsec-Scale Rotation Measures in Active Galactic Nuclei , 2003, astro-ph/0302367.

[23]  J. Zensus,et al.  Linear Polarization Imaging with Very Long Baseline Interferometry at High Frequencies , 1995 .

[24]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[25]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[26]  D. Gabuzda,et al.  VSOP polarization observations of the BL Lacertae object OJ 287 , 2001 .

[27]  M. Aloy,et al.  SPECTRAL EVOLUTION OF SUPERLUMINAL COMPONENTS IN PARSEC-SCALE JETS , 2008, 0811.1143.

[28]  R. Blandford,et al.  Numerical simulations of magnetized jets , 1989 .

[29]  Sergei Sergeev,et al.  The RadioAstron Green Bank Earth Station , 2014, Astronomical Telescopes and Instrumentation.

[30]  O. Porth,et al.  SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS , 2011, 1105.4258.

[31]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[32]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[33]  Paul S. Smith,et al.  A MULTI-WAVELENGTH POLARIMETRIC STUDY OF THE BLAZAR CTA 102 DURING A GAMMA-RAY FLARE IN 2012 , 2015, 1508.07254.

[34]  A powerful hydrodynamic booster for relativistic jets , 2006, astro-ph/0602437.

[35]  A. Marscher,et al.  Space VLBI Observations of 3C 371 , 1999, astro-ph/9912521.

[36]  G. Denn,et al.  IS THE RADIO CORE OF BL LACERTAE PRECESSING , 2004, astro-ph/0412496.

[37]  A. Lobanov Brightness temperature constraints from interferometric visibilities , 2014, 1412.2121.

[38]  M. Cohen,et al.  STUDIES OF THE JET IN BL LACERTAE. I. RECOLLIMATION SHOCK AND MOVING EMISSION FEATURES , 2014, 1404.0976.

[39]  L. Rezzolla,et al.  RECOLLIMATION SHOCKS IN MAGNETIZED RELATIVISTIC JETS , 2015, 1505.00933.

[40]  A. Lahteenmaki,et al.  Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies , 2008, 0811.4278.

[41]  M. Cohen,et al.  MOJAVE: Monitoring of Jets in Active galactic nuclei with VLBA Experiments , 2012, 1207.5457.

[42]  S. O’Sullivan,et al.  Three-dimensional magnetic field structure of six parsec-scale active galactic nuclei jets , 2008, 0811.4426.

[43]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[44]  K. Kellermann Brightness Temperature Constraints to Compact Synchrotron Source Radiation Obtained from IDV and VLBI Observations , 2002, Publications of the Astronomical Society of Australia.

[45]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[46]  Supriya Chakrabarti,et al.  Astronomical data analysis from remote sites , 1988 .

[47]  V. Dhawan,et al.  VLBA Absorption Imaging of Ionized Gas Associated with the Accretion Disk in NGC 1275 , 1999, astro-ph/9909365.

[48]  A. Tchekhovskoy,et al.  Dynamically important magnetic fields near accreting supermassive black holes , 2014, Nature.

[49]  A. Lobanov,et al.  Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies , 2008, 0802.2970.

[50]  A. Marscher,et al.  Hydrodynamical Models of Superluminal Sources , 1997 .

[51]  J. A. Zensus,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005 .

[52]  W L Peters,et al.  Very Long Baseline Interferometric Observations Made with an Orbiting Radio Telescope , 1986, Science.

[53]  A. Lähteenmäki,et al.  Total Flux Density Variations in Extragalactic Radio Sources. II. Determining the Limiting Brightness Temperature for Synchrotron Sources , 1999 .

[54]  S. Iguchi,et al.  A Helical Magnetic Field in the jet of 3C 273(Session 1:Astrophysical Jets,High-Energy Emission from Accreting Compact Objects,Korea-Japan Seminar) , 2002, astro-ph/0205497.

[55]  Kenneth I. Kellermann,et al.  The Spectra of Opaque Radio Sources , 1969 .

[56]  A. Marscher,et al.  Parsec-Scale Synchrotron Emission from Hydrodynamic Relativistic Jets in Active Galactic Nuclei , 1995 .

[57]  J. Jukes Continuum Radiation from Quasi-stellar Sources , 1967, Nature.

[58]  A. Broderick,et al.  PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS , 2010, 1006.5015.