On graph-restrictive permutation groups

Let @C be a connected G-vertex-transitive graph, let v be a vertex of @C and let L=G"v^@C^(^v^) be the permutation group induced by the action of the vertex-stabiliser G"v on the neighbourhood @C(v). Then (@C,G) is said to be locally-L. A transitive permutation group L is graph-restrictive if there exists a constant c(L) such that, for every locally-L pair (@C,G) and an arc (u,v) of @C, the inequality |G"u"v|=

[1]  Richard Weiss Groups with a ( B, N )–pair and locally transitive graphs , 1979 .

[2]  Gilbert Baumslag,et al.  On the residual finiteness of generalised free products of nilpotent groups , 1963 .

[3]  Richard Weiss,et al.  An application of p-factorization methods to symmetric graphs , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Gunter Malle,et al.  Inverse Galois Theory , 2002 .

[5]  R. Weiss Graphs which are locally Grassmann , 1993 .

[6]  V I Trofimov GRAPHS WITH PROJECTIVE SUBORBITS , 1992 .

[7]  V. Trofimov Graphs with projective suborbits. Exceptional cases of characteristic 2. II , 1998 .

[8]  G. Sabidussi Vertex-transitive graphs , 1964 .

[9]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[10]  P. Spiga,et al.  Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups , 2011, 1102.4421.

[12]  Richard Weiss,et al.  Permutation groups with projective unitary subconstituents , 1980 .

[13]  R. Weiss,et al.  Graphs with a locally linear group of automorphisms , 1995 .

[14]  W. T. Tutte On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.

[15]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .

[16]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Gabriel Verret,et al.  ON THE ORDER OF ARC-STABILIZERS IN ARC-TRANSITIVE GRAPHS , 2009, Bulletin of the Australian Mathematical Society.

[18]  A. Maróti,et al.  On groups with every normal subgroup transitive or semiregular , 2008 .

[19]  D. Faddeev,et al.  The Embedding Problem in Galois Theory , 1997 .

[20]  J. van Bon THOMPSON–WIELANDT-LIKE THEOREMS REVISITED , 2003 .

[21]  H. Weyl Permutation Groups , 2022 .

[22]  C. Bates,et al.  Normalizers of p-subgroups in finite groups , 2009 .

[23]  Peter J. Cameron,et al.  6-Transitive graphs , 1980, J. Comb. Theory, Ser. B.

[24]  A. Gardiner,et al.  ARC TRANSITIVITY IN GRAPHS , 1973 .

[25]  Cheryl E. Praeger,et al.  On the Weiss conjecture for finite locally primitive graphs , 2000, Proceedings of the Edinburgh Mathematical Society.

[26]  Richard M. Weiss,et al.  The group E6(q) and graphs with a locally linear group of automorphisms , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.