Dynamic network resources optimization based on machine learning and cellular data mining

Les traces reelles de reseaux cellulaires representent une mine d’information utile pour ameliorer les performances des reseaux. Des traces comme les CDRs (Call detail records) contiennent des informations horodatees sur toutes les interactions des utilisateurs avec le reseau sont exploitees dans cette these. Nous avons propose des nouvelles approches dans l’etude et l’analyse des problematiques des reseaux de telecommunications, qui sont base sur les traces reelles et des algorithmes d’apprentissage automatique. En effet, un outil global d’analyse de donnees, pour la classification automatique des stations de base, la prediction de la charge de reseau et la gestion de la bande passante est propose ainsi qu’un outil pour la detection automatique des anomalies de reseau. Ces outils ont ete valides par des applications directes, et en utilisant differentes topologies de reseaux comme les reseaux WMN et les reseaux bases sur les drone-cells. Nous avons montre ainsi, qu’en utilisant des outils d’analyse de donnees avances, il est possible d’optimiser dynamiquement les reseaux mobiles et ameliorer la gestion de la bande passante.

[1]  Antonio Capone,et al.  Energy Savings in Wireless Mesh Networks in a Time-Variable Context , 2012, Mob. Networks Appl..

[2]  Xu Li,et al.  Drone-assisted public safety wireless broadband network , 2015, 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

[3]  Lau Chiew Tong,et al.  List multi-coloring based fair channel allocation policy for self coexistence in cognitive radio networks with QoS provisioning , 2014, 2014 IEEE REGION 10 SYMPOSIUM.

[4]  Huan Li,et al.  Deriving Operational Origin-Destination Matrices From Large Scale Mobile Phone Data , 2013 .

[5]  Prasad Tadepalli,et al.  Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery , 2006, ECML.

[6]  Christoph C. Michael,et al.  Two state-based approaches to program-based anomaly detection , 2000, Proceedings 16th Annual Computer Security Applications Conference (ACSAC'00).

[7]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[8]  M.M. Buddhikot,et al.  Understanding Dynamic Spectrum Access: Models,Taxonomy and Challenges , 2007, 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks.

[9]  Evgeny Burnaev,et al.  One-Class SVM with Privileged Information and Its Application to Malware Detection , 2016, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).

[10]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[11]  Asmaa Maali,et al.  Enhanced spectrum sensing based on Energy detection in cognitive radio network using adaptive threshold , 2017, 2017 International Conference on Networking, Systems and Security (NSysS).

[12]  Hwangnam Kim,et al.  Drone formation algorithm on 3D space for a drone-based network infrastructure , 2016, 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  Marco Fiore,et al.  Spatio-Temporal Completion of Call Detail Records for Human Mobility Analysis , 2017 .

[16]  Chunxiao Jiang,et al.  Resource Allocation for Cognitive Small Cell Networks: A Cooperative Bargaining Game Theoretic Approach , 2015, IEEE Transactions on Wireless Communications.

[17]  P HowJonathan,et al.  A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning , 2013 .

[18]  Cristina Cano,et al.  Implications of decentralized Q-learning resource allocation in wireless networks , 2017, 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[19]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[20]  Raman K. Mehra,et al.  Detection and classification of intrusions and faults using sequences of system calls , 2001, SGMD.

[21]  Miao Pan,et al.  SD-MAC: Spectrum Database-Driven MAC Protocol for Cognitive Machine-to-Machine Networks , 2017, IEEE Transactions on Vehicular Technology.

[22]  Danny H. K. Tsang,et al.  Optimal energy-efficient cooperative sensing scheduling for Cognitive Radio Networks with QoS guarantee , 2011, 2011 7th International Wireless Communications and Mobile Computing Conference.

[23]  Eamonn J. Keogh,et al.  Towards parameter-free data mining , 2004, KDD.

[24]  Marco Fiore,et al.  Classifying call profiles in large-scale mobile traffic datasets , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[25]  L. Venkata Subramaniam,et al.  Mining GPS data to determine interesting locations , 2011, IIWeb '11.

[26]  Dietmar Bauer,et al.  Inferring land use from mobile phone activity , 2012, UrbComp '12.

[27]  Tapani Ristaniemi,et al.  Anomaly Detection Algorithms for the Sleeping Cell Detection in LTE Networks , 2015, 2015 IEEE 81st Vehicular Technology Conference (VTC Spring).

[28]  Li Wei,et al.  Assumption-Free Anomaly Detection in Time Series , 2005, SSDBM.

[29]  A. Liu,et al.  Characterizing and modeling internet traffic dynamics of cellular devices , 2011, PERV.

[30]  OwezarskiPhilippe,et al.  Online and Scalable Unsupervised Network Anomaly Detection Method , 2017 .

[31]  Minas Gjoka,et al.  On the Decomposition of Cell Phone Activity Patterns and their Connection with Urban Ecology , 2015, MobiHoc.

[32]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[33]  Carla Marceau,et al.  Characterizing the behavior of a program using multiple-length N-grams , 2001, NSPW '00.

[34]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.

[35]  Marco Fiore,et al.  A Tale of Ten Cities: Characterizing Signatures of Mobile Traffic in Urban Areas , 2017, IEEE Transactions on Mobile Computing.

[36]  M. Barthelemy,et al.  From mobile phone data to the spatial structure of cities , 2014, Scientific Reports.

[37]  Hossam Afifi,et al.  Network planning tool based on network classification and load prediction , 2016, 2016 IEEE Wireless Communications and Networking Conference.

[38]  Beeshanga Abewardana Jayawickrama,et al.  Priority Access and General Authorized Access Interference Mitigation in the Spectrum Access System , 2018, IEEE Transactions on Vehicular Technology.

[39]  Cong Xiong,et al.  Energy- and Spectral-Efficiency Tradeoff in Downlink OFDMA Networks , 2011, IEEE Transactions on Wireless Communications.

[40]  Jing Peng,et al.  Incremental multi-step Q-learning , 1994, Machine Learning.

[41]  Charles E. Perkins,et al.  Ad hoc On-Demand Distance Vector (AODV) Routing , 2001, RFC.

[42]  Eamonn J. Keogh,et al.  Finding surprising patterns in a time series database in linear time and space , 2002, KDD.

[43]  Alexis Sultan,et al.  Méthodes et outils d'analyse de données de signalisation mobile pour l'étude de la mobilité humaine , 2016 .

[44]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[45]  Long Chen,et al.  Spectrum combinatorial double auction for cognitive radio network with ubiquitous network resource providers , 2015, IET Commun..

[46]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[47]  Tzi-cker Chiueh,et al.  Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[48]  Yong Li,et al.  Big Data Driven Mobile Traffic Understanding and Forecasting: A Time Series Approach , 2016, IEEE Transactions on Services Computing.

[49]  Jie Yang,et al.  The application of Markov model Based Equivalence Class Generalization in network anomaly detection , 2017, 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA).

[50]  Joel J. P. C. Rodrigues,et al.  Game Theory-Based Channel Allocation in Cognitive Radio Networks , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[51]  Víctor Soto,et al.  Automated land use identification using cell-phone records , 2011, HotPlanet '11.

[52]  Onisimo Mutanga,et al.  Discriminating the early stages of Sirex noctilio infestation using classification tree ensembles and shortwave infrared bands , 2011 .

[53]  Vipin Kumar,et al.  Comparative Evaluation of Anomaly Detection Techniques for Sequence Data , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[54]  Halim Yanikomeroglu,et al.  On the Number and 3D Placement of Drone Base Stations in Wireless Cellular Networks , 2016, 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall).

[55]  Tijani Chahed,et al.  Congestion mitigation in 5G networks using drone relays , 2016, 2016 International Wireless Communications and Mobile Computing Conference (IWCMC).

[56]  Honghui Dong,et al.  Travel trajectories analysis based on call detail record data , 2017, 2017 29th Chinese Control And Decision Conference (CCDC).

[57]  Xi Zhang,et al.  Full-Duplex Spectrum-Sensing and MAC-Protocol for Multichannel Nontime-Slotted Cognitive Radio Networks , 2015, IEEE Journal on Selected Areas in Communications.

[58]  Edoardo Amaldi,et al.  Optimization models and methods for planning wireless mesh networks , 2008, Comput. Networks.

[59]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[60]  Diego Klabjan,et al.  Topology Formation for Wireless Mesh Network Planning , 2009, IEEE INFOCOM 2009.

[61]  Muhamad Asvial,et al.  Decision-based link scheduling approximation algorithm with SINR relaxation for wireless mesh network , 2015, 2015 International Conference on Computer, Control, Informatics and its Applications (IC3INA).

[62]  Chi Cheng,et al.  A multi-agent reinforcement learning algorithm based on Stackelberg game , 2017, 2017 6th Data Driven Control and Learning Systems (DDCLS).

[63]  Hossam Afifi,et al.  A dynamic femto cell architecture using TV Whitespace improving user experience of urban Crowds , 2015, 2015 International Wireless Communications and Mobile Computing Conference (IWCMC).

[64]  Nada Golmie,et al.  Centralized Cooperative Directional Spectrum Sensing for Cognitive Radio Networks , 2018, IEEE Transactions on Mobile Computing.

[65]  Xing Xie,et al.  Mining Individual Life Pattern Based on Location History , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[66]  Mustafa Cenk Gursoy,et al.  Energy-efficient power adaptation for cognitive radio systems under imperfect channel sensing , 2014, 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[67]  D. G. Narayan,et al.  CL-ILD: A Cross Layer Interference-Load and Delay Aware Routing Metric for Multi-radio Wireless Mesh Network , 2013, 2013 2nd International Conference on Advanced Computing, Networking and Security.

[68]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[69]  Zhou Jin,et al.  Collecting and analyzing mobility data from mobile network , 2009, 2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology.

[70]  Farshad Lahouti,et al.  Automatic fault detection and diagnosis in cellular networks using operations support systems data , 2016, NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium.

[71]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[72]  K. Venkata Subbaiah,et al.  An efficient interference aware channel allocation algorithm for Wireless Mesh Networks , 2015, 2015 International Conference on Signal Processing and Communication Engineering Systems.

[73]  Joongsoo Ma,et al.  Efficient interference-aware channel allocation in multi-radio wireless mesh networks , 2012, 2012 14th International Conference on Advanced Communication Technology (ICACT).

[74]  Zwi Altman,et al.  Automated Diagnosis for UMTS Networks Using Bayesian Network Approach , 2008, IEEE Transactions on Vehicular Technology.

[75]  Marco Fiore,et al.  Characterizing the Instantaneous Connectivity of Large-Scale Urban Vehicular Networks , 2017, IEEE Transactions on Mobile Computing.

[76]  Dipankar Dasgupta,et al.  Anomaly detection in multidimensional data using negative selection algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[77]  Salim Eryigit,et al.  Energy efficiency is a subtle concept: fundamental trade-offs for cognitive radio networks , 2014, IEEE Communications Magazine.

[78]  Kazuyuki Aihara,et al.  Optimization for Centralized and Decentralized Cognitive Radio Networks , 2014, Proceedings of the IEEE.

[79]  Ananthram Swami,et al.  A Survey of Dynamic Spectrum Access: Signal Processing and Networking Perspectives , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[80]  Minrui Fei,et al.  An Anomaly Detection Approach Based on Isolation Forest Algorithm for Streaming Data Using Sliding Window , 2013, ICONS.

[81]  Ting-Yu Lin,et al.  Applying Genetic Algorithms for Multiradio Wireless Mesh Network Planning , 2012, IEEE Transactions on Vehicular Technology.

[82]  Tamma Bheemarjuna Reddy,et al.  Predicting performance of channel assignments in Wireless Mesh Networks through statistical interference estimation , 2015, 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT).

[83]  Aleksandar Kuzmanovic,et al.  Measuring serendipity: connecting people, locations and interests in a mobile 3G network , 2009, IMC '09.

[84]  Halim Yanikomeroglu,et al.  Backhaul-aware robust 3D drone placement in 5G+ wireless networks , 2017, 2017 IEEE International Conference on Communications Workshops (ICC Workshops).

[85]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[86]  Alexandre M. Bayen,et al.  Understanding Road Usage Patterns in Urban Areas , 2012, Scientific Reports.

[87]  Osmar R. Zaïane,et al.  Time series contextual anomaly detection for detecting market manipulation in stock market , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[88]  Chung-Horng Lung,et al.  Mobile Network Traffic Prediction Using MLP, MLPWD, and SVM , 2016, 2016 IEEE International Congress on Big Data (BigData Congress).

[89]  Vipin Kumar,et al.  Anomaly Detection for Discrete Sequences: A Survey , 2012, IEEE Transactions on Knowledge and Data Engineering.

[90]  Hakim Ghazzai,et al.  Energy Management in Cellular HetNets Assisted by Solar Powered Drone Small Cells , 2017, 2017 IEEE Wireless Communications and Networking Conference (WCNC).

[91]  Marco Luca Sbodio,et al.  AllAboard: A System for Exploring Urban Mobility and Optimizing Public Transport Using Cellphone Data , 2013, ECML/PKDD.

[92]  Raffaello D'Andrea,et al.  Path Planning for Unmanned Aerial Vehicles in Uncertain and Adversarial Environments , 2003 .

[93]  Yueming Cai,et al.  Stochastic Game-Theoretic Spectrum Access in Distributed and Dynamic Environment , 2015, IEEE Transactions on Vehicular Technology.

[94]  Edgar Nett,et al.  Fault-tolerant base station planning of Wireless Mesh Networks in dynamic industrial environments , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[95]  Cong Xiong,et al.  Energy-Efficient Spectrum Access in Cognitive Radios , 2014, IEEE Journal on Selected Areas in Communications.

[96]  Mikhail J. Atallah,et al.  Detection of significant sets of episodes in event sequences , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[97]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[98]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[99]  Philippe Jacquet,et al.  Optimized Link State Routing Protocol (OLSR) , 2003, RFC.

[100]  Radu State,et al.  Identifying abnormal patterns in cellular communication flows , 2013, IPTComm '13.

[101]  Jinoh Kim,et al.  Unsupervised Labeling for Supervised Anomaly Detection in Enterprise and Cloud Networks , 2017, 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud).

[102]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[103]  Eamonn J. Keogh,et al.  Derivative Dynamic Time Warping , 2001, SDM.

[104]  Robert Gwadera,et al.  Optimal segmentation using tree models , 2006, Sixth International Conference on Data Mining (ICDM'06).

[105]  Alborz Geramifard,et al.  A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning , 2013, Found. Trends Mach. Learn..

[106]  Mikhail J. Atallah,et al.  Reliable detection of episodes in event sequences , 2004, Knowledge and Information Systems.

[107]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[108]  Yi Sun,et al.  Predicting Human Mobility from Region Functions , 2016, 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[109]  N. Srinivasan,et al.  Using Random Forests for Network-based Anomaly detection at Active routers , 2008, 2008 International Conference on Signal Processing, Communications and Networking.

[110]  Yan Shi,et al.  Urban traffic commuting analysis based on mobile phone data , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[111]  Ian F. Akyildiz,et al.  Help from the Sky: Leveraging UAVs for Disaster Management , 2017, IEEE Pervasive Computing.

[112]  Margaret Martonosi,et al.  Human mobility modeling at metropolitan scales , 2012, MobiSys '12.

[113]  Felix Juraschek Interference-aware wireless mesh networks , 2013, 2013 IEEE 14th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM).

[114]  Yufeng Wang,et al.  A QoS-Guaranteed Adaptive Cooperation Scheme in Cognitive Radio Network , 2016, 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA).

[115]  Brian M. Sadler,et al.  A Survey of Dynamic Spectrum Access , 2007, IEEE Signal Processing Magazine.

[116]  Vincent D. Blondel,et al.  A survey of results on mobile phone datasets analysis , 2015, EPJ Data Science.

[117]  Abdelhakim Hafid,et al.  Optimization Models For Planning Wireless Mesh Networks: A Comparative Study , 2009, 2009 IEEE Wireless Communications and Networking Conference.

[118]  Juan Li,et al.  Interference-Aware Robust Wireless Mesh Network Design , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[119]  Ning Xu,et al.  Q-Learning Based Interference-Aware Channel Handoff for Partially Observable Cognitive Radio Ad Hoc Networks , 2017 .

[120]  Onisimo Mutanga,et al.  Random Forests Unsupervised Classification: The Detection and Mapping of Solanum mauritianum Infestations in Plantation Forestry Using Hyperspectral Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[121]  Luc Martens,et al.  Emergency ad-hoc networks by using drone mounted base stations for a disaster scenario , 2016, 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[122]  Péter Szilágyi,et al.  An Automatic Detection and Diagnosis Framework for Mobile Communication Systems , 2012, IEEE Transactions on Network and Service Management.

[123]  Samik Ghosh,et al.  Channel Assignment Strategies for Multiradio Wireless Mesh Networks: Issues and Solutions , 2007, IEEE Communications Magazine.

[124]  Xinxing Pan,et al.  A comparison of support vector machines and artificial neural networks for mid-term load forecasting , 2012, 2012 IEEE International Conference on Industrial Technology.

[125]  Tianqi Zhou,et al.  TPAHS: A Truthful and Profit Maximizing Double Auction for Heterogeneous Spectrums , 2016, 2016 IEEE Trustcom/BigDataSE/ISPA.

[126]  Ryosuke Shibasaki,et al.  Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data , 2010, HBU.

[127]  Sylvio Barbon Junior,et al.  Anomaly detection using digital signature of network segment with adaptive ARIMA model and Paraconsistent Logic , 2014, 2014 IEEE Symposium on Computers and Communications (ISCC).

[128]  Robert Tappan Morris,et al.  Architecture and evaluation of an unplanned 802.11b mesh network , 2005, MobiCom '05.

[129]  Ming Yang,et al.  Interference-aware gateway placement for wireless mesh networks with fault tolerance assurance , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[130]  Jitendra Padhye,et al.  Routing in multi-radio, multi-hop wireless mesh networks , 2004, MobiCom '04.

[131]  Luiz A. DaSilva,et al.  Spatial spectrum sharing-based carrier aggregation for heterogeneous networks , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[132]  Wenhao Huang,et al.  Automated urban location annotation on mobile records , 2013, 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[133]  Carlo Ratti,et al.  Towards a comparative science of cities: using mobile traffic records in New York, London and Hong Kong , 2014, ArXiv.

[134]  Wenjie Zhang,et al.  Spectrum Sharing for Heterogeneous Networks and Application Systems in TV White Spaces , 2018, IEEE Access.

[135]  Lijun Qian,et al.  Belief Propagation and Quickest Detection-Based Cooperative Spectrum Sensing in Heterogeneous and Dynamic Environments , 2017, IEEE Transactions on Wireless Communications.

[136]  David Masad,et al.  Mesa: An Agent-Based Modeling Framework , 2015, SciPy.

[137]  Bernhard Walke,et al.  IEEE 802.11s: The WLAN Mesh Standard , 2010, IEEE Wireless Communications.