Exploring the impact of size of training sets for the development of predictive QSAR models

[1]  Kunal Roy,et al.  Comparative Classical QSAR Modeling of Anti-HIV Thiocarbamates , 2007 .

[2]  Paola Gramatica,et al.  Principles of QSAR models validation: internal and external , 2007 .

[3]  K. Roy,et al.  QSPR of n‐Octanol/Water Partition Coefficient of Nonionic Organic Compounds Using Extended Topochemical Atom (ETA) Indices , 2007 .

[4]  Paola Gramatica,et al.  Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. , 2007, Journal of molecular graphics & modelling.

[5]  K. Roy,et al.  QSPR of the bioconcentration factors of non-ionic organic compounds in fish using extended topochemical atom (ETA) indices , 2006, SAR and QSAR in environmental research.

[6]  Kunal Roy,et al.  On Selection of Training and Test Sets for the Development of Predictive QSAR models , 2006 .

[7]  Jaroslaw Polanski,et al.  A 4D-QSAR study on anti-HIV HEPT analogues. , 2006, Bioorganic & medicinal chemistry.

[8]  Peter C Jurs,et al.  Assessing the reliability of a QSAR model's predictions. , 2005, Journal of molecular graphics & modelling.

[9]  Silvia Schenone,et al.  Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives. , 2005, Journal of medicinal chemistry.

[10]  Weida Tong,et al.  Assessing QSAR Limitations - A Regulatory Perspective , 2005 .

[11]  M. Cronin,et al.  The Impact of variable selection on the modelling of oestrogenicity , 2005, SAR and QSAR in environmental research.

[12]  Dan C. Fara,et al.  QSPR Treatment of the Soil Sorption Coefficients of Organic Pollutants , 2005, J. Chem. Inf. Model..

[13]  Rajarshi Guha,et al.  Determining the Validity of a QSAR Model - A Classification Approach , 2005, J. Chem. Inf. Model..

[14]  Weida Tong,et al.  Assessment of Prediction Confidence and Domain Extrapolation of Two Structure–Activity Relationship Models for Predicting Estrogen Receptor Binding Activity , 2004, Environmental health perspectives.

[15]  M. T. Saçan,et al.  QSPR Study on the Bioconcentration Factors of Nonionic Organic Compounds in Fish by Characteristic Root Index and Semiempirical Molecular Descriptors , 2004, J. Chem. Inf. Model..

[16]  Asim Kumar Debnath,et al.  Generation of predictive pharmacophore models for CCR5 antagonists: study with piperidine- and piperazine-based compounds as a new class of HIV-1 entry inhibitors. , 2003, Journal of medicinal chemistry.

[17]  Weida Tong,et al.  Structure‐activity relationship approaches and applications , 2003, Environmental toxicology and chemistry.

[18]  L. Eriksson,et al.  Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. , 2003, Environmental Health Perspectives.

[19]  John C Dearden,et al.  Guidelines for developing and using quantitative structure‐activity relationships , 2003, Environmental toxicology and chemistry.

[20]  John C. Dearden,et al.  In silico prediction of drug toxicity , 2003, J. Comput. Aided Mol. Des..

[21]  Robert D. Clark,et al.  Boosted leave-many-out cross-validation: the effect of training and test set diversity on PLS statistics , 2003, J. Comput. Aided Mol. Des..

[22]  Douglas M. Hawkins,et al.  Assessing Model Fit by Cross-Validation , 2003, J. Chem. Inf. Comput. Sci..

[23]  Alexander Golbraikh,et al.  Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection , 2002, J. Comput. Aided Mol. Des..

[24]  Hugo Kubinyi,et al.  Quantitative Structure–Activity Relationships in Drug Design , 2002 .

[25]  J N Weinstein,et al.  Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies. , 2001, Journal of medicinal chemistry.

[26]  Alexander Golbraikh,et al.  Molecular Dataset Diversity Indices and Their Applications to Comparison of Chemical Databases and QSAR Analysis , 2000, J. Chem. Inf. Comput. Sci..

[27]  Hugo Kubinyi,et al.  3D QSAR in drug design : theory, methods and applications , 2000 .

[28]  V. Kulkarni,et al.  Three-dimensional quantitative structure-activity relationship of interleukin 1-beta converting enzyme inhibitors: A comparative molecular field analysis study. , 1999, Journal of medicinal chemistry.

[29]  H. Kubinyi,et al.  Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. , 1998, Journal of medicinal chemistry.

[30]  Desire L. Massart,et al.  Artificial neural networks in classification of NIR spectral data: Design of the training set , 1996 .

[31]  Han van de Waterbeemd,et al.  Chemometric methods in molecular design , 1995 .

[32]  Robin Taylor,et al.  Simulation Analysis of Experimental Design Strategies for Screening Random Compounds as Potential New Drugs and Agrochemicals , 1995, J. Chem. Inf. Comput. Sci..

[33]  Han Van De Waterbeemd Advanced Computer-Assisted Techniques in Drug Discover , 1994 .

[34]  G M Crippen,et al.  Analysis of cocaine receptor site ligand binding by three-dimensional Voronoi site modeling approach. , 1993, Journal of medicinal chemistry.

[35]  Jure Zupan,et al.  Neural networks in chemistry , 1993 .

[36]  R. Carlson,et al.  Design and optimization in organic synthesis , 1991 .

[37]  R. Darlington,et al.  Regression and Linear Models , 1990 .

[38]  Rainer Franke,et al.  Theoretical drug design methods , 1984 .