Entanglement entropy for the long-range Ising chain in a transverse field.

We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi-long-range order, and one dominated by the long-range interaction, with long-range Néel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central charges. In the phase with quasi-long-range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.

[1]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[2]  David Ruelle,et al.  Statistical mechanics of a one-dimensional lattice gas , 1968 .

[3]  Long-range interactions and nonextensivity in ferromagnetic spin models. , 1996, Physical review. B, Condensed matter.

[4]  J. Cardy One-dimensional models with 1/r2 interactions , 1981 .

[5]  G. Evenbly,et al.  Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law , 2009, 0903.5017.

[6]  Michael E. Fisher,et al.  Critical Exponents for Long-Range Interactions , 1972 .

[7]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[8]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[9]  A. Lefevre,et al.  Entanglement spectrum in one-dimensional systems , 2008, 0806.3059.

[10]  General entanglement scaling laws from time evolution. , 2006, Physical review letters.

[11]  On geometric entropy , 1994, hep-th/9401072.

[12]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[13]  A. Sandvik,et al.  Ground states of a frustrated quantum spin chain with long-range interactions. , 2010, Physical review letters.

[14]  Craig A. Tracy,et al.  Communications in Mathematical Physics The Pearcey Process , 2006 .

[15]  M. Prutton,et al.  Reports on Progress in Physics , 1936, Nature.

[16]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[17]  C. Monroe,et al.  Onset of a quantum phase transition with a trapped ion quantum simulator. , 2011, Nature communications.

[18]  P. Zoller,et al.  One-dimensional quantum liquids with power-law interactions: the Luttinger staircase. , 2010, Physical review letters.

[19]  J. Cardy,et al.  Unusual corrections to scaling in entanglement entropy , 2010, 1002.4353.

[20]  Helmut G. Katzgraber,et al.  Probing the Almeida-Thouless line away from the mean-field model , 2005 .

[21]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[22]  Chuang Liu,et al.  Scaling and Renormalization , 2002 .

[23]  Guifre Vidal,et al.  Applying matrix product operators to model systems with long-range interactions , 2008, 0804.2504.

[24]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[25]  Hiroyuki Kamada Communications in Mathematical Physics Compact Scalar-flat Indefinite Kähler Surfaces with Hamiltonian S 1-Symmetry , .

[26]  J. Bhattacharjee,et al.  Phase transitions in the quantum Ising and rotor models with a long-range interaction , 2001 .

[27]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[28]  Lluis Masanes,et al.  Area law for the entropy of low-energy states , 2009, 0907.4672.

[29]  José Ignacio Latorre,et al.  Ground state entanglement in quantum spin chains , 2004, Quantum Inf. Comput..

[30]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[31]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[32]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[33]  D. Porras,et al.  Effective spin quantum phases in systems of trapped ions (11 pages) , 2005 .

[34]  Critical phenomena and quantum phase transition in long range Heisenberg antiferromagnetic chains , 2005, cond-mat/0509390.

[35]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[36]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[37]  J. Haegeman Variational renormalization group methods for extended quantum systems , 2011 .

[38]  M. Lewenstein,et al.  Complete devil's staircase and crystal–superfluid transitions in a dipolar XXZ spin chain: a trapped ion quantum simulation , 2010, 1008.2945.

[39]  S. Müller,et al.  Anomalous behavior of spin systems with dipolar interactions. , 2012, Physical review letters.

[40]  Freeman J. Dyson,et al.  Existence of a phase-transition in a one-dimensional Ising ferromagnet , 1969 .

[41]  W. Dur,et al.  Tensor operators: Constructions and applications for long-range interaction systems , 2010, 1003.1047.