Some properties of maximal monotone operators on nonreflexive Banach spaces
暂无分享,去创建一个
[1] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[2] Jean-Pierre Gossez,et al. On the range of a coercive maximal monotone operator in a nonreflexive Banach space , 1972 .
[3] M. E. Verona,et al. Remarks on subgradients and ɛ-subgradients , 1993 .
[4] R. R. Phelps,et al. Bounded approximants to monotone operators on Banach spaces , 1992 .
[5] S. Reich. The range of sums of accretive and monotone operators , 1979 .
[6] Jean-Pierre Gossez,et al. On a convexity property of the range of a maximal monotone operator , 1976 .
[7] Subdifferentials are locally maximal monotone , 1993, Bulletin of the Australian Mathematical Society.
[8] R. Rockafellar. Local boundedness of nonlinear, monotone operators. , 1969 .
[9] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[10] R. Phelps. Convex Functions, Monotone Operators and Differentiability , 1989 .
[11] Jonathan M. Borwein,et al. A Survey of Examples of Convex Functions and Classifications of Normed Spaces , 1994 .
[12] Jean-Pierre Gossez,et al. Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs , 1971 .
[13] J. Gossez. On the extensions to the bidual of a maximal monotone operator , 1977 .
[14] R. Rockafellar. On the maximality of sums of nonlinear monotone operators , 1970 .