Pathophysiology of ischemic acute kidney injury

[1]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[2]  B. Molitoris,et al.  Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. , 2011, American journal of physiology. Renal physiology.

[3]  M. Tonelli,et al.  Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study , 2010, The Lancet.

[4]  Bing Li,et al.  The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  B. Molitoris,et al.  Intravital Two-Photon Microscopy Assessment of Renal Protection Efficacy of siRNA for p53 in Experimental Rat Kidney Transplantation Models , 2010, Cell transplantation.

[6]  Prabhleen Singh,et al.  Chronic kidney disease: an inherent risk factor for acute kidney injury? , 2010, Clinical journal of the American Society of Nephrology : CJASN.

[7]  R. Gebhardt,et al.  Cardiovascular , Pulmonary and Renal Pathology Tubular Overexpression of Transforming Growth Factor-1 Induces Autophagy and Fibrosis but Not Mesenchymal Transition of Renal Epithelial Cells , 2010 .

[8]  S. Coca Acute kidney injury in elderly persons. , 2010, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[9]  Liping Huang,et al.  Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury. , 2010, Journal of the American Society of Nephrology : JASN.

[10]  Bing Li,et al.  Mobilized Human Hematopoietic Stem/Progenitor Cells Promote Kidney Repair After Ischemia/Reperfusion Injury , 2010, Circulation.

[11]  Liping Huang,et al.  Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney. , 2010, Kidney international.

[12]  Ling Li,et al.  Autophagy is a component of epithelial cell fate in obstructive uropathy. , 2010, The American journal of pathology.

[13]  M. Banach,et al.  The role of Toll-like receptors in renal diseases , 2010, Nature Reviews Nephrology.

[14]  C. Edelstein,et al.  Mediators of Inflammation in Acute Kidney Injury , 2010, Mediators of inflammation.

[15]  Jie J. Zheng,et al.  Macrophage Wnt7b is critical for kidney repair and regeneration , 2010, Proceedings of the National Academy of Sciences.

[16]  U. Heemann,et al.  Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury , 2010, Pediatric Nephrology.

[17]  B. Molitoris,et al.  Activated protein C and acute kidney injury: Selective targeting of PAR-1. , 2009, Current drug targets.

[18]  J. Himmelfarb Acute kidney injury in the elderly: problems and prospects. , 2009, Seminars in nephrology.

[19]  M. Crow,et al.  Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. , 2009, Kidney international.

[20]  F. Tögel,et al.  VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury , 2009, Journal of cellular and molecular medicine.

[21]  B. Molitoris,et al.  siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. , 2009, Journal of the American Society of Nephrology : JASN.

[22]  Liping Huang,et al.  Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. , 2009, Journal of the American Society of Nephrology : JASN.

[23]  R. Colvin,et al.  Effect of T cells on vascular permeability in early ischemic acute kidney injury in mice. , 2009, Microvascular research.

[24]  B. Molitoris,et al.  Soluble thrombomodulin protects ischemic kidneys. , 2009, Journal of the American Society of Nephrology : JASN.

[25]  G. Chertow,et al.  The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. , 2009, Clinical journal of the American Society of Nephrology : CJASN.

[26]  F. Becherucci,et al.  The Role of Endothelial Progenitor Cells in Acute Kidney Injury , 2009, Blood Purification.

[27]  B. Grinnell,et al.  Distinct functions of activated protein C differentially attenuate acute kidney injury. , 2009, Journal of the American Society of Nephrology : JASN.

[28]  M. Wagner,et al.  Ischemic Injury to Kidney Induces Glomerular Podocyte Effacement and Dissociation of Slit Diaphragm Proteins Neph1 and ZO-1* , 2008, Journal of Biological Chemistry.

[29]  D. Basile,et al.  VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. , 2008, American journal of physiology. Renal physiology.

[30]  Christopher T. Chan,et al.  Predicting and preventing acute kidney injury after cardiac surgery , 2008, Current opinion in nephrology and hypertension.

[31]  K. Eckardt,et al.  Activation of hypoxia-inducible factors ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney. , 2008, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[32]  B. Molitoris Contrast nephropathy: are short-term outcome measures adequate for quantification of long-term renal risk? , 2008, Nature Clinical Practice Nephrology.

[33]  M. Okusa,et al.  Inflammation in Acute Kidney Injury , 2008, Nephron Experimental Nephrology.

[34]  Xue-Ru Wu,et al.  Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. , 2008, American journal of physiology. Renal physiology.

[35]  Sudhir V. Shah,et al.  Evaluation and initial management of acute kidney injury. , 2008, Clinical journal of the American Society of Nephrology : CJASN.

[36]  M. Mattson,et al.  Acute kidney injury leads to inflammation and functional changes in the brain. , 2008, Journal of the American Society of Nephrology : JASN.

[37]  M. Okusa,et al.  Sphingosine-1-phosphate receptors: biology and therapeutic potential in kidney disease. , 2008, Kidney international.

[38]  Joseph V Bonventre,et al.  Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. , 2008, The Journal of clinical investigation.

[39]  D. Basile,et al.  Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. , 2008, American journal of physiology. Renal physiology.

[40]  R. Bellomo,et al.  Pathophysiology of septic acute kidney injury: What do we really know? , 2008, Critical care medicine.

[41]  A. McMahon,et al.  Intrinsic epithelial cells repair the kidney after injury. , 2008, Cell stem cell.

[42]  C. Ronco,et al.  The RIFLE criteria and mortality in acute kidney injury: A systematic review. , 2008, Kidney international.

[43]  B. Molitoris,et al.  Technology Insight: biomarker development in acute kidney injury—what can we anticipate? , 2008, Nature Clinical Practice Nephrology.

[44]  J. Bonventre,et al.  Mesenchymal stem cells in acute kidney injury. , 2008, Annual review of medicine.

[45]  Douglas Losordo,et al.  Frontiers in nephrology: the evolving therapeutic applications of endothelial progenitor cells. , 2007, Journal of the American Society of Nephrology : JASN.

[46]  P. Dagher,et al.  Sepsis induces an increase in thick ascending limb Cox-2 that is TLR4 dependent. , 2007, American journal of physiology. Renal physiology.

[47]  S. Chadban,et al.  TLR4 activation mediates kidney ischemia/reperfusion injury. , 2007, The Journal of clinical investigation.

[48]  A. Kribben,et al.  Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. , 2007, American journal of physiology. Renal physiology.

[49]  D. Wencker Acute cardio-renal syndrome: Progression from congestive heart failure to congestive kidney failure , 2007, Current heart failure reports.

[50]  B. Molitoris,et al.  Two-photon microscopy: visualization of kidney dynamics. , 2007, Kidney international.

[51]  D. Basile The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. , 2007, Kidney international.

[52]  B. Molitoris,et al.  Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. , 2007, American journal of physiology. Renal physiology.

[53]  V. Engelhard,et al.  NKT Cell Activation Mediates Neutrophil IFN-γ Production and Renal Ischemia-Reperfusion Injury1 , 2007, The Journal of Immunology.

[54]  K. Nath,et al.  Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. , 2007, Kidney international.

[55]  J. Lambris,et al.  C3a Is Required for the Production of CXC Chemokines by Tubular Epithelial Cells after Renal Ishemia/Reperfusion1 , 2007, The Journal of Immunology.

[56]  Motohiko Suzuki,et al.  Protection of Renal Ischemia Injury using Combination Gene Silencing of Complement 3 and Caspase 3 Genes , 2006, Transplantation.

[57]  Catherine Verfaillie,et al.  Isolation and characterization of kidney-derived stem cells. , 2006, Journal of the American Society of Nephrology : JASN.

[58]  R. Sandoval,et al.  Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. , 2006, American journal of physiology. Renal physiology.

[59]  T. Rabelink,et al.  Angiogenesis and endothelial cell repair in renal disease and allograft rejection. , 2006, Journal of the American Society of Nephrology : JASN.

[60]  J. Thurman,et al.  Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. , 2006, The Journal of clinical investigation.

[61]  H. Rabb,et al.  Role of the T-cell receptor in kidney ischemia-reperfusion injury. , 2006, Kidney international.

[62]  L. Cantley Adult stem cells in the repair of the injured renal tubule , 2005, Nature Clinical Practice Nephrology.

[63]  M. Broe Tubular regeneration and the role of bone marrow cells: ‘stem cell therapy’ – a panacea? , 2005 .

[64]  A. Zander,et al.  Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. , 2005, Kidney international.

[65]  K. Chopra,et al.  Renal protective effect of molsidomine and L-arginine in ischemia-reperfusion induced injury in rats. , 2005, The Journal of surgical research.

[66]  Liping Huang,et al.  Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. , 2005, American journal of physiology. Renal physiology.

[67]  G. Camussi,et al.  Isolation of renal progenitor cells from adult human kidney. , 2005, The American journal of pathology.

[68]  R. Quigg,et al.  Acute Renal Failure in Endotoxemia is Dependent on Caspase Activation , 2003 .

[69]  S. Arrigain,et al.  A clinical score to predict acute renal failure after cardiac surgery. , 2004, Journal of the American Society of Nephrology : JASN.

[70]  R. Safirstein Acute renal failure: from renal physiology to the renal transcriptome. , 2004, Kidney international. Supplement.

[71]  R. Sesso,et al.  Prognosis of ARF in hospitalized elderly patients. , 2004, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[72]  M. Atkinson,et al.  Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. , 2004, The American journal of pathology.

[73]  B. Molitoris Actin cytoskeleton in ischemic acute renal failure. , 2004, Kidney international.

[74]  B. Molitoris,et al.  Endothelial injury and dysfunction: role in the extension phase of acute renal failure. , 2004, Kidney international.

[75]  D. Collen,et al.  Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[76]  C. Adori,et al.  Divergence of renal vascular endothelial growth factor mRNA expression and protein level in post‐ischaemic rat kidneys , 2004, Experimental physiology.

[77]  M. Goligorsky,et al.  NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. , 2004, Seminars in nephrology.

[78]  M. Pinsky Pathophysiology of sepsis and multiple organ failure: pro- versus anti-inflammatory aspects. , 2004, Contributions to nephrology.

[79]  P. Gunning,et al.  Renal ischemia induces tropomyosin dissociation-destabilizing microvilli microfilaments. , 2004, American journal of physiology. Renal physiology.

[80]  B. Molitoris,et al.  Mechanism of Actin Polymerization in Cellular ATP Depletion* , 2004, Journal of Biological Chemistry.

[81]  K. Ley,et al.  Leukocyte recruitment and acute renal failure , 2004, Journal of Molecular Medicine.

[82]  A. Nishiyama,et al.  The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. , 2003, European journal of pharmacology.

[83]  M. Venkatachalam,et al.  Role of apoptosis in hypoxic/ischemic damage in the kidney. , 2003, Seminars in nephrology.

[84]  W. Baldwin,et al.  B Cell Deficiency Confers Protection from Renal Ischemia Reperfusion Injury 1 , 2003, The Journal of Immunology.

[85]  P. Ward,et al.  The enigma of sepsis. , 2003, The Journal of clinical investigation.

[86]  B. Molitoris,et al.  Injury of the renal microvascular endothelium alters barrier function after ischemia. , 2003, American journal of physiology. Renal physiology.

[87]  Tetsuhiro Tanaka,et al.  Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. , 2003, Journal of the American Society of Nephrology : JASN.

[88]  K. Kelly Distant effects of experimental renal ischemia/reperfusion injury. , 2003, Journal of the American Society of Nephrology : JASN.

[89]  B. Molitoris,et al.  ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion. , 2003, American journal of physiology. Renal physiology.

[90]  Leonard C. Edelstein,et al.  NF-κB-Dependent Assembly of an Enhanceosome-Like Complex on the Promoter Region of Apoptosis Inhibitor Bfl-1/A1 , 2003, Molecular and Cellular Biology.

[91]  J. Köhl,et al.  Complement Factor C5a Mediates Renal Ischemia-Reperfusion Injury Independent from Neutrophils1 , 2003, The Journal of Immunology.

[92]  H. Rabb,et al.  Acute renal failure leads to dysregulation of lung salt and water channels. , 2003, Kidney international.

[93]  H. Rabb,et al.  The role of adhesion molecules and T cells in ischemic renal injury , 2003, Current opinion in nephrology and hypertension.

[94]  H. Rabb,et al.  Pathophysiological Contributions of Fucosyltransferases in Renal Ischemia Reperfusion Injury1 , 2002, The Journal of Immunology.

[95]  K. Kelly,et al.  Stress response proteins and renal ischemia. , 2002, Minerva urologica e nefrologica = The Italian journal of urology and nephrology.

[96]  S. Hou,et al.  Hospital-acquired renal insufficiency. , 2002, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[97]  W. Lieberthal,et al.  Role of apoptosis in the pathogenesis of acute renal failure , 2002, Current opinion in nephrology and hypertension.

[98]  A. Agarwal,et al.  Heme oxygenase and the kidney. , 2002, DNA and cell biology.

[99]  D. Bullard,et al.  Mice genetically lacking endothelial selectins are resistant to the lethality in septic peritonitis. , 2002, Experimental and molecular pathology.

[100]  R. Olshen,et al.  Maintenance and recovery stages of postischemic acute renal failure in humans. , 2002, American journal of physiology. Renal physiology.

[101]  J. Alam,et al.  Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. , 2001, Kidney international.

[102]  B. Kasiske,et al.  Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. , 2001, Kidney international.

[103]  K. Ley,et al.  Platelet, but not endothelial, P‐selectin is critical for neutrophil‐mediated acute postischemic renal failure , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[104]  P. Neuhaus,et al.  Influence of donor brain death on chronic rejection of renal transplants in rats. , 2001, Journal of the American Society of Nephrology : JASN.

[105]  M. Goligorsky,et al.  Oxidative and nitrosative stress in acute renal ischemia. , 2001, American journal of physiology. Renal physiology.

[106]  M. Kaminishi,et al.  Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia-reperfused rat kidneys. , 2001, The Journal of laboratory and clinical medicine.

[107]  B. Molitoris,et al.  Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. , 2001, American journal of physiology. Renal physiology.

[108]  K. Park,et al.  Prevention of Kidney Ischemia/Reperfusion-induced Functional Injury and JNK, p38, and MAPK Kinase Activation by Remote Ischemic Pretreatment* , 2001, The Journal of Biological Chemistry.

[109]  J. Younger,et al.  Protective effects of anti‐C5a peptide antibodies in experimental sepsis , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[110]  D. Nicholson,et al.  From bench to clinic with apoptosis-based therapeutic agents , 2000, Nature.

[111]  T. Noguchi,et al.  Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. , 2000, Blood.

[112]  J. Margonari,et al.  In vivo effects of monoclonal antibodies against rat beta(2) integrins on kidney ischemia-reperfusion injury. , 1999, The Journal of surgical research.

[113]  M. Scheid,et al.  Regulation of Bad Phosphorylation and Association with Bcl-xL by the MAPK/Erk Kinase* , 1999, The Journal of Biological Chemistry.

[114]  R. Schrier,et al.  Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. , 1999, American journal of physiology. Renal physiology.

[115]  G. Mayer,et al.  Apoptosis of tubular epithelial cells in donor kidney biopsies predicts early renal allograft function. , 1999, Journal of the American Society of Nephrology : JASN.

[116]  D. Portilla,et al.  Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure. , 1999, Current opinion in nephrology and hypertension.

[117]  H. Rabb,et al.  Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. , 1999, Kidney international.

[118]  B. Molitoris,et al.  The role of cell adhesion molecules in ischemic acute renal failure. , 1999, The American journal of medicine.

[119]  W. Lieberthal,et al.  Necrosis and apoptosis in acute renal failure. , 1998, Seminars in nephrology.

[120]  J. Bonventre,et al.  Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. , 1998, American journal of physiology. Cell physiology.

[121]  B. Molitoris,et al.  Cellular ATP depletion induces disruption of the spectrin cytoskeletal network. , 1996, The American journal of physiology.

[122]  J Pascual,et al.  Epidemiology of acute renal failure: A prospective, multicenter, community-based study , 1996 .

[123]  J. Weinberg,et al.  Calcium dependence of integrity of the actin cytoskeleton of proximal tubule cell microvilli. , 1996, The American journal of physiology.

[124]  G. Liaño,et al.  Acute renal failure. Madrid Acute Renal Failure Study Group. , 1996, Lancet.

[125]  W. Deen,et al.  Mechanisms of filtration failure during postischemic injury of the human kidney. A study of the reperfused renal allograft. , 1995, The Journal of clinical investigation.

[126]  R. Doctor,et al.  Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury. , 1994, The American journal of physiology.

[127]  B. Molitoris Na(+)-K(+)-ATPase that redistributes to apical membrane during ATP depletion remains functional. , 1993, American Journal of Physiology.

[128]  R. N. Garrison,et al.  Factors affecting renal microvascular blood flow in rat hyperdynamic bacteremia. , 1993, American Journal of Physiology.

[129]  J. McIntosh,et al.  Dissociation and redistribution of Na+,K(+)-ATPase from its surface membrane actin cytoskeletal complex during cellular ATP depletion. , 1991, The Journal of clinical investigation.

[130]  J. Robinette,et al.  Differences in vascular reactivity in models of ischemic acute renal failure. , 1991, Kidney international.

[131]  B. Molitoris,et al.  Epithelial polarity following ischemia: a requirement for normal cell function. , 1989, The American journal of physiology.

[132]  K. Badr,et al.  Prerenal failure: a deleterious shift from renal compensation to decompensation. , 1988, The New England journal of medicine.

[133]  S. Rostand,et al.  Treatment of uremic pericarditis and pericardial effusion. , 1987, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[134]  R. Shulman,et al.  Chemical and functional correlates of postischemic renal ATP levels. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[135]  V. Kon,et al.  Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin. , 1985, The Journal of clinical investigation.

[136]  J. Hall,et al.  Control of glomerular filtration rate: role of intrarenally formed angiotensin II. , 1984, The American journal of physiology.

[137]  P. Cannon,et al.  Renal vasodilation by converting enzyme inhibition. Role of renal prostaglandins. , 1983, Hypertension.

[138]  K. Solez,et al.  The Morphology of “Acute Tubular Necrosis” in Man: Analysis of 57 Renal Biopsies and a Comparison with the Glycerol Model , 1979, Medicine.

[139]  A. S. Appel,et al.  Acute Renal Failure , 1960, Advances in Experimental Medicine and Biology.

[140]  Dible Jh,et al.  Acute tubular necrosis. , 1950 .

[141]  S. Bagshaw,et al.  Acute kidney injury: classification and staging. , 2010, Contributions to nephrology.

[142]  T. A. Sutton,et al.  Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. , 2005, American journal of physiology. Renal physiology.

[143]  M. Piroddi,et al.  Oxidative stress and reactive oxygen species. , 2005, Contributions to nephrology.

[144]  M. D. de Broe,et al.  Tubular regeneration and the role of bone marrow cells: 'stem cell therapy'--a panacea? , 2005, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[145]  Renal Vasodilation by Converting Enzyme Inhibition , 2005 .

[146]  坪井 直毅 Roles of Toll-like receptors in C-C chemokine production by renal tubular epithelial cells , 2004 .

[147]  P. Dagher,et al.  P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. , 2003, Journal of the American Society of Nephrology : JASN.

[148]  D. Mattson,et al.  Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla. , 2000, Acta physiologica Scandinavica.

[149]  R. Schrier,et al.  Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. , 1999, The American journal of physiology.

[150]  M. Paller,et al.  Nitric oxide-mediated renal epithelial cell injury during hypoxia and reoxygenation. , 1998, Renal failure.

[151]  R. Blantz The glomerular and tubular actions of angiotensin II. , 1987, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[152]  R. Schrier,et al.  Renal hemodynamics in acute renal failure. , 1980, Annual review of physiology.